nopenpilot/pyextra/acados_template/c_templates_tera/main.in.c

217 lines
7.9 KiB
C

/*
* Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
* Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
* Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
* Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
// standard
#include <stdio.h>
#include <stdlib.h>
// acados
#include "acados/utils/print.h"
#include "acados/utils/math.h"
#include "acados_c/ocp_nlp_interface.h"
#include "acados_c/external_function_interface.h"
#include "acados_solver_{{ model.name }}.h"
#define NX {{ model.name | upper }}_NX
#define NZ {{ model.name | upper }}_NZ
#define NU {{ model.name | upper }}_NU
#define NP {{ model.name | upper }}_NP
#define NBX {{ model.name | upper }}_NBX
#define NBX0 {{ model.name | upper }}_NBX0
#define NBU {{ model.name | upper }}_NBU
#define NSBX {{ model.name | upper }}_NSBX
#define NSBU {{ model.name | upper }}_NSBU
#define NSH {{ model.name | upper }}_NSH
#define NSG {{ model.name | upper }}_NSG
#define NSPHI {{ model.name | upper }}_NSPHI
#define NSHN {{ model.name | upper }}_NSHN
#define NSGN {{ model.name | upper }}_NSGN
#define NSPHIN {{ model.name | upper }}_NSPHIN
#define NSBXN {{ model.name | upper }}_NSBXN
#define NS {{ model.name | upper }}_NS
#define NSN {{ model.name | upper }}_NSN
#define NG {{ model.name | upper }}_NG
#define NBXN {{ model.name | upper }}_NBXN
#define NGN {{ model.name | upper }}_NGN
#define NY0 {{ model.name | upper }}_NY0
#define NY {{ model.name | upper }}_NY
#define NYN {{ model.name | upper }}_NYN
#define NH {{ model.name | upper }}_NH
#define NPHI {{ model.name | upper }}_NPHI
#define NHN {{ model.name | upper }}_NHN
#define NPHIN {{ model.name | upper }}_NPHIN
#define NR {{ model.name | upper }}_NR
int main()
{
{{ model.name }}_solver_capsule *acados_ocp_capsule = {{ model.name }}_acados_create_capsule();
// there is an opportunity to change the number of shooting intervals in C without new code generation
int N = {{ model.name | upper }}_N;
// allocate the array and fill it accordingly
double* new_time_steps = NULL;
int status = {{ model.name }}_acados_create_with_discretization(acados_ocp_capsule, N, new_time_steps);
if (status)
{
printf("{{ model.name }}_acados_create() returned status %d. Exiting.\n", status);
exit(1);
}
ocp_nlp_config *nlp_config = {{ model.name }}_acados_get_nlp_config(acados_ocp_capsule);
ocp_nlp_dims *nlp_dims = {{ model.name }}_acados_get_nlp_dims(acados_ocp_capsule);
ocp_nlp_in *nlp_in = {{ model.name }}_acados_get_nlp_in(acados_ocp_capsule);
ocp_nlp_out *nlp_out = {{ model.name }}_acados_get_nlp_out(acados_ocp_capsule);
ocp_nlp_solver *nlp_solver = {{ model.name }}_acados_get_nlp_solver(acados_ocp_capsule);
void *nlp_opts = {{ model.name }}_acados_get_nlp_opts(acados_ocp_capsule);
// initial condition
int idxbx0[NBX0];
{%- for i in range(end=dims.nbx_0) %}
idxbx0[{{ i }}] = {{ constraints.idxbx_0[i] }};
{%- endfor %}
double lbx0[NBX0];
double ubx0[NBX0];
{%- for i in range(end=dims.nbx_0) %}
lbx0[{{ i }}] = {{ constraints.lbx_0[i] }};
ubx0[{{ i }}] = {{ constraints.ubx_0[i] }};
{%- endfor %}
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "idxbx", idxbx0);
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "lbx", lbx0);
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "ubx", ubx0);
// initialization for state values
double x_init[NX];
{%- for i in range(end=dims.nx) %}
x_init[{{ i }}] = 0.0;
{%- endfor %}
// initial value for control input
double u0[NU];
{%- for i in range(end=dims.nu) %}
u0[{{ i }}] = 0.0;
{%- endfor %}
{%- if dims.np > 0 %}
// set parameters
double p[NP];
{%- for item in parameter_values %}
p[{{ loop.index0 }}] = {{ item }};
{%- endfor %}
for (int ii = 0; ii <= N; ii++)
{
{{ model.name }}_acados_update_params(acados_ocp_capsule, ii, p, NP);
}
{% endif %}{# if np > 0 #}
// prepare evaluation
int NTIMINGS = 1;
double min_time = 1e12;
double kkt_norm_inf;
double elapsed_time;
int sqp_iter;
double xtraj[NX * (N+1)];
double utraj[NU * N];
// solve ocp in loop
int rti_phase = 0;
for (int ii = 0; ii < NTIMINGS; ii++)
{
// initialize solution
for (int i = 0; i < N; i++)
{
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "x", x_init);
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "u", u0);
}
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, N, "x", x_init);
ocp_nlp_solver_opts_set(nlp_config, nlp_opts, "rti_phase", &rti_phase);
status = {{ model.name }}_acados_solve(acados_ocp_capsule);
ocp_nlp_get(nlp_config, nlp_solver, "time_tot", &elapsed_time);
min_time = MIN(elapsed_time, min_time);
}
/* print solution and statistics */
for (int ii = 0; ii <= nlp_dims->N; ii++)
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "x", &xtraj[ii*NX]);
for (int ii = 0; ii < nlp_dims->N; ii++)
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "u", &utraj[ii*NU]);
printf("\n--- xtraj ---\n");
d_print_exp_tran_mat( NX, N+1, xtraj, NX);
printf("\n--- utraj ---\n");
d_print_exp_tran_mat( NU, N, utraj, NU );
// ocp_nlp_out_print(nlp_solver->dims, nlp_out);
printf("\nsolved ocp %d times, solution printed above\n\n", NTIMINGS);
if (status == ACADOS_SUCCESS)
{
printf("{{ model.name }}_acados_solve(): SUCCESS!\n");
}
else
{
printf("{{ model.name }}_acados_solve() failed with status %d.\n", status);
}
// get solution
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, 0, "kkt_norm_inf", &kkt_norm_inf);
ocp_nlp_get(nlp_config, nlp_solver, "sqp_iter", &sqp_iter);
{{ model.name }}_acados_print_stats(acados_ocp_capsule);
printf("\nSolver info:\n");
printf(" SQP iterations %2d\n minimum time for %d solve %f [ms]\n KKT %e\n",
sqp_iter, NTIMINGS, min_time*1000, kkt_norm_inf);
// free solver
status = {{ model.name }}_acados_free(acados_ocp_capsule);
if (status) {
printf("{{ model.name }}_acados_free() returned status %d. \n", status);
}
// free solver capsule
status = {{ model.name }}_acados_free_capsule(acados_ocp_capsule);
if (status) {
printf("{{ model.name }}_acados_free_capsule() returned status %d. \n", status);
}
return status;
}