nopenpilot/selfdrive/debug/internal/time_to_collision.py

84 lines
2.0 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from scipy.optimize import minimize
a = -9.81
dt = 0.1
r = 2.0
v_ls = []
x_ls = []
v_egos = []
for vv_ego in np.arange(35, 40, 1):
for vv_l in np.arange(35, 40, 1):
for xx_l in np.arange(0, 100, 1.0):
x_l = xx_l
v_l = vv_l
v_ego = vv_ego
x_ego = 0.0
ttc = None
for t in np.arange(0, 100, dt):
x_l += v_l * dt
v_l += a * dt
v_l = max(v_l, 0.0)
x_ego += v_ego * dt
if t > r:
v_ego += a * dt
v_ego = max(v_ego, 0.0)
if x_ego >= x_l:
ttc = t
break
if ttc is None:
if xx_l < 0.1:
break
v_ls.append(vv_l)
x_ls.append(xx_l)
v_egos.append(vv_ego)
break
def eval_f(x, v_ego, v_l):
est = x[0] * v_l + x[1] * v_l**2 \
+ x[2] * v_ego + x[3] * v_ego**2
return est
def f(x):
r = 0.0
for v_ego, v_l, x_l in zip(v_egos, v_ls, x_ls):
est = eval_f(x, v_ego, v_l)
r += (x_l - est)**2
return r
x0 = [0.5, 0.5, 0.5, 0.5]
res = minimize(f, x0, method='Nelder-Mead')
print(res)
print(res.x)
g = 9.81
t_r = 1.8
estimated = [4.0 + eval_f(res.x, v_ego, v_l) for (v_ego, v_l) in zip(v_egos, v_ls)]
new_formula = [4.0 + v_ego * t_r - (v_l - v_ego) * t_r + v_ego**2/(2*g) - v_l**2 / (2*g) for (v_ego, v_l) in zip(v_egos, v_ls)]
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
surf = ax.scatter(v_egos, v_ls, x_ls, s=1)
# surf = ax.scatter(v_egos, v_ls, estimated, s=1)
surf = ax.scatter(v_egos, v_ls, new_formula, s=1)
ax.set_xlabel('v ego')
ax.set_ylabel('v lead')
ax.set_zlabel('min distance')
plt.show()