1
0
Fork 0
stockfish/src/position.cpp

2235 lines
66 KiB
C++
Raw Normal View History

2008-08-31 23:59:13 -06:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008 Marco Costalba
2008-08-31 23:59:13 -06:00
Stockfish is free software: you can redistribute it and/or modify
2008-08-31 23:59:13 -06:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
2008-08-31 23:59:13 -06:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2008-08-31 23:59:13 -06:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <iostream>
#include <fstream>
#include "mersenne.h"
#include "movegen.h"
#include "movepick.h"
#include "position.h"
#include "psqtab.h"
#include "san.h"
2008-08-31 23:59:13 -06:00
#include "ucioption.h"
////
//// Variables
////
extern SearchStack EmptySearchStack;
2008-08-31 23:59:13 -06:00
int Position::castleRightsMask[64];
Key Position::zobrist[2][8][64];
Key Position::zobEp[64];
Key Position::zobCastle[16];
Key Position::zobMaterial[2][8][16];
Key Position::zobSideToMove;
Value Position::MgPieceSquareTable[16][64];
Value Position::EgPieceSquareTable[16][64];
static bool RequestPending = false;
2008-08-31 23:59:13 -06:00
////
//// Functions
////
/// Constructors
Position::Position(const Position& pos) {
copy(pos);
2008-08-31 23:59:13 -06:00
}
Position::Position(const std::string& fen) {
from_fen(fen);
2008-08-31 23:59:13 -06:00
}
/// Position::from_fen() initializes the position object with the given FEN
/// string. This function is not very robust - make sure that input FENs are
/// correct (this is assumed to be the responsibility of the GUI).
void Position::from_fen(const std::string& fen) {
2008-08-31 23:59:13 -06:00
static const std::string pieceLetters = "KQRBNPkqrbnp";
static const Piece pieces[] = { WK, WQ, WR, WB, WN, WP, BK, BQ, BR, BB, BN, BP };
clear();
2008-08-31 23:59:13 -06:00
// Board
Rank rank = RANK_8;
File file = FILE_A;
size_t i = 0;
for ( ; fen[i] != ' '; i++)
{
if (isdigit(fen[i]))
{
// Skip the given number of files
file += (fen[i] - '1' + 1);
continue;
2008-08-31 23:59:13 -06:00
}
else if (fen[i] == '/')
{
file = FILE_A;
rank--;
continue;
}
size_t idx = pieceLetters.find(fen[i]);
if (idx == std::string::npos)
{
std::cout << "Error in FEN at character " << i << std::endl;
return;
}
Square square = make_square(file, rank);
put_piece(pieces[idx], square);
file++;
2008-08-31 23:59:13 -06:00
}
// Side to move
i++;
if (fen[i] != 'w' && fen[i] != 'b')
{
std::cout << "Error in FEN at character " << i << std::endl;
return;
2008-08-31 23:59:13 -06:00
}
sideToMove = (fen[i] == 'w' ? WHITE : BLACK);
2008-08-31 23:59:13 -06:00
// Castling rights
2008-08-31 23:59:13 -06:00
i++;
if (fen[i] != ' ')
{
std::cout << "Error in FEN at character " << i << std::endl;
return;
2008-08-31 23:59:13 -06:00
}
i++;
while(strchr("KQkqabcdefghABCDEFGH-", fen[i])) {
if (fen[i] == '-')
{
i++;
break;
2008-08-31 23:59:13 -06:00
}
else if(fen[i] == 'K') allow_oo(WHITE);
else if(fen[i] == 'Q') allow_ooo(WHITE);
else if(fen[i] == 'k') allow_oo(BLACK);
else if(fen[i] == 'q') allow_ooo(BLACK);
2008-08-31 23:59:13 -06:00
else if(fen[i] >= 'A' && fen[i] <= 'H') {
File rookFile, kingFile = FILE_NONE;
for(Square square = SQ_B1; square <= SQ_G1; square++)
if(piece_on(square) == WK)
2008-08-31 23:59:13 -06:00
kingFile = square_file(square);
if(kingFile == FILE_NONE) {
std::cout << "Error in FEN at character " << i << std::endl;
return;
}
initialKFile = kingFile;
rookFile = File(fen[i] - 'A') + FILE_A;
if(rookFile < initialKFile) {
allow_ooo(WHITE);
2008-08-31 23:59:13 -06:00
initialQRFile = rookFile;
}
else {
allow_oo(WHITE);
2008-08-31 23:59:13 -06:00
initialKRFile = rookFile;
}
}
else if(fen[i] >= 'a' && fen[i] <= 'h') {
File rookFile, kingFile = FILE_NONE;
for(Square square = SQ_B8; square <= SQ_G8; square++)
if(piece_on(square) == BK)
2008-08-31 23:59:13 -06:00
kingFile = square_file(square);
if(kingFile == FILE_NONE) {
std::cout << "Error in FEN at character " << i << std::endl;
return;
}
initialKFile = kingFile;
rookFile = File(fen[i] - 'a') + FILE_A;
if(rookFile < initialKFile) {
allow_ooo(BLACK);
2008-08-31 23:59:13 -06:00
initialQRFile = rookFile;
}
else {
allow_oo(BLACK);
2008-08-31 23:59:13 -06:00
initialKRFile = rookFile;
}
}
else {
std::cout << "Error in FEN at character " << i << std::endl;
return;
}
i++;
}
// Skip blanks
while (fen[i] == ' ')
i++;
2008-08-31 23:59:13 -06:00
// En passant square
if ( i < fen.length() - 2
&& (fen[i] >= 'a' && fen[i] <= 'h')
&& (fen[i+1] == '3' || fen[i+1] == '6'))
st.epSquare = square_from_string(fen.substr(i, 2));
2008-08-31 23:59:13 -06:00
// Various initialisation
for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
castleRightsMask[sq] = ALL_CASTLES;
2008-08-31 23:59:13 -06:00
castleRightsMask[make_square(initialKFile, RANK_1)] ^= (WHITE_OO|WHITE_OOO);
castleRightsMask[make_square(initialKFile, RANK_8)] ^= (BLACK_OO|BLACK_OOO);
2008-08-31 23:59:13 -06:00
castleRightsMask[make_square(initialKRFile, RANK_1)] ^= WHITE_OO;
castleRightsMask[make_square(initialKRFile, RANK_8)] ^= BLACK_OO;
castleRightsMask[make_square(initialQRFile, RANK_1)] ^= WHITE_OOO;
castleRightsMask[make_square(initialQRFile, RANK_8)] ^= BLACK_OOO;
find_checkers();
2008-08-31 23:59:13 -06:00
st.key = compute_key();
st.pawnKey = compute_pawn_key();
st.materialKey = compute_material_key();
st.mgValue = compute_value<MidGame>();
st.egValue = compute_value<EndGame>();
npMaterial[WHITE] = compute_non_pawn_material(WHITE);
npMaterial[BLACK] = compute_non_pawn_material(BLACK);
2008-08-31 23:59:13 -06:00
}
/// Position::to_fen() converts the position object to a FEN string. This is
/// probably only useful for debugging.
const std::string Position::to_fen() const {
static const std::string pieceLetters = " PNBRQK pnbrqk";
std::string fen;
2008-08-31 23:59:13 -06:00
int skip;
for (Rank rank = RANK_8; rank >= RANK_1; rank--)
{
skip = 0;
for (File file = FILE_A; file <= FILE_H; file++)
{
Square sq = make_square(file, rank);
if (!square_is_occupied(sq))
{ skip++;
continue;
}
if (skip > 0)
{
fen += (char)skip + '0';
skip = 0;
}
fen += pieceLetters[piece_on(sq)];
2008-08-31 23:59:13 -06:00
}
if (skip > 0)
fen += (char)skip + '0';
2008-08-31 23:59:13 -06:00
fen += (rank > RANK_1 ? '/' : ' ');
2008-08-31 23:59:13 -06:00
}
fen += (sideToMove == WHITE ? "w " : "b ");
if (st.castleRights != NO_CASTLES)
{
if (can_castle_kingside(WHITE)) fen += 'K';
if (can_castle_queenside(WHITE)) fen += 'Q';
if (can_castle_kingside(BLACK)) fen += 'k';
if (can_castle_queenside(BLACK)) fen += 'q';
} else
fen += '-';
fen += ' ';
if (ep_square() != SQ_NONE)
fen += square_to_string(ep_square());
else
fen += '-';
return fen;
2008-08-31 23:59:13 -06:00
}
/// Position::print() prints an ASCII representation of the position to
/// the standard output. If a move is given then also the san is print.
void Position::print(Move m) const {
static const std::string pieceLetters = " PNBRQK PNBRQK .";
// Check for reentrancy, as example when called from inside
// MovePicker that is used also here in move_to_san()
if (RequestPending)
return;
RequestPending = true;
std::cout << std::endl;
if (m != MOVE_NONE)
{
std::string col = (color_of_piece_on(move_from(m)) == BLACK ? ".." : "");
std::cout << "Move is: " << col << move_to_san(*this, m) << std::endl;
}
for (Rank rank = RANK_8; rank >= RANK_1; rank--)
{
std::cout << "+---+---+---+---+---+---+---+---+" << std::endl;
for (File file = FILE_A; file <= FILE_H; file++)
{
Square sq = make_square(file, rank);
Piece piece = piece_on(sq);
if (piece == EMPTY && square_color(sq) == WHITE)
piece = NO_PIECE;
char col = (color_of_piece_on(sq) == BLACK ? '=' : ' ');
std::cout << '|' << col << pieceLetters[piece] << col;
}
std::cout << '|' << std::endl;
2008-08-31 23:59:13 -06:00
}
std::cout << "+---+---+---+---+---+---+---+---+" << std::endl
<< "Fen is: " << to_fen() << std::endl
<< "Key is: " << st.key << std::endl;
RequestPending = false;
2008-08-31 23:59:13 -06:00
}
/// Position::copy() creates a copy of the input position.
void Position::copy(const Position &pos) {
2008-08-31 23:59:13 -06:00
memcpy(this, &pos, sizeof(Position));
}
/// Position:pinned_pieces() returns a bitboard of all pinned (against the
/// king) pieces for the given color.
Bitboard Position::pinned_pieces(Color c) const {
if (st.pinned[c] != ~EmptyBoardBB)
return st.pinned[c];
Bitboard p1, p2;
Square ksq = king_square(c);
st.pinned[c] = hidden_checks<ROOK, true>(c, ksq, p1) | hidden_checks<BISHOP, true>(c, ksq, p2);
st.pinners[c] = p1 | p2;
return st.pinned[c];
}
Bitboard Position::pinned_pieces(Color c, Bitboard& p) const {
if (st.pinned[c] == ~EmptyBoardBB)
pinned_pieces(c);
p = st.pinners[c];
return st.pinned[c];
}
Bitboard Position::discovered_check_candidates(Color c) const {
if (st.dcCandidates[c] != ~EmptyBoardBB)
return st.dcCandidates[c];
Bitboard dummy;
Square ksq = king_square(opposite_color(c));
st.dcCandidates[c] = hidden_checks<ROOK, false>(c, ksq, dummy) | hidden_checks<BISHOP, false>(c, ksq, dummy);
return st.dcCandidates[c];
}
/// Position:hidden_checks<>() returns a bitboard of all pinned (against the
/// king) pieces for the given color and for the given pinner type. Or, when
/// template parameter FindPinned is false, the pinned pieces of opposite color
/// that are, indeed, the pieces candidate for a discovery check.
template<PieceType Piece, bool FindPinned>
Bitboard Position::hidden_checks(Color c, Square ksq, Bitboard& pinners) const {
Square s;
Bitboard sliders, result = EmptyBoardBB;
if (Piece == ROOK) // Resolved at compile time
sliders = rooks_and_queens(FindPinned ? opposite_color(c) : c) & RookPseudoAttacks[ksq];
else
sliders = bishops_and_queens(FindPinned ? opposite_color(c) : c) & BishopPseudoAttacks[ksq];
2008-08-31 23:59:13 -06:00
if (sliders && (!FindPinned || (sliders & ~st.checkersBB)))
{
// King blockers are candidate pinned pieces
Bitboard candidate_pinned = piece_attacks<Piece>(ksq) & pieces_of_color(c);
// Pinners are sliders, not checkers, that give check when
// candidate pinned are removed.
pinners = (FindPinned ? sliders & ~st.checkersBB : sliders);
if (Piece == ROOK)
pinners &= rook_attacks_bb(ksq, occupied_squares() ^ candidate_pinned);
else
pinners &= bishop_attacks_bb(ksq, occupied_squares() ^ candidate_pinned);
2008-08-31 23:59:13 -06:00
// Finally for each pinner find the corresponding pinned piece (if same color of king)
// or discovery checker (if opposite color) among the candidates.
Bitboard p = pinners;
while (p)
{
s = pop_1st_bit(&p);
result |= (squares_between(s, ksq) & candidate_pinned);
}
2008-08-31 23:59:13 -06:00
}
else
pinners = EmptyBoardBB;
return result;
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
/// Position::attacks_to() computes a bitboard containing all pieces which
/// attacks a given square. There are two versions of this function: One
/// which finds attackers of both colors, and one which only finds the
/// attackers for one side.
Bitboard Position::attacks_to(Square s) const {
return (pawn_attacks(BLACK, s) & pawns(WHITE))
| (pawn_attacks(WHITE, s) & pawns(BLACK))
| (piece_attacks<KNIGHT>(s) & pieces_of_type(KNIGHT))
| (piece_attacks<ROOK>(s) & rooks_and_queens())
| (piece_attacks<BISHOP>(s) & bishops_and_queens())
| (piece_attacks<KING>(s) & pieces_of_type(KING));
2008-08-31 23:59:13 -06:00
}
/// Position::piece_attacks_square() tests whether the piece on square f
/// attacks square t.
bool Position::piece_attacks_square(Piece p, Square f, Square t) const {
2008-08-31 23:59:13 -06:00
assert(square_is_ok(f));
assert(square_is_ok(t));
switch (p)
{
case WP: return pawn_attacks_square(WHITE, f, t);
case BP: return pawn_attacks_square(BLACK, f, t);
case WN: case BN: return piece_attacks_square<KNIGHT>(f, t);
case WB: case BB: return piece_attacks_square<BISHOP>(f, t);
case WR: case BR: return piece_attacks_square<ROOK>(f, t);
case WQ: case BQ: return piece_attacks_square<QUEEN>(f, t);
case WK: case BK: return piece_attacks_square<KING>(f, t);
default: break;
2008-08-31 23:59:13 -06:00
}
return false;
}
/// Position::move_attacks_square() tests whether a move from the current
/// position attacks a given square.
2008-08-31 23:59:13 -06:00
bool Position::move_attacks_square(Move m, Square s) const {
assert(move_is_ok(m));
assert(square_is_ok(s));
Square f = move_from(m), t = move_to(m);
assert(square_is_occupied(f));
if (piece_attacks_square(piece_on(f), t, s))
return true;
// Move the piece and scan for X-ray attacks behind it
Bitboard occ = occupied_squares();
Color us = color_of_piece_on(f);
clear_bit(&occ, f);
set_bit(&occ, t);
Bitboard xray = ( (rook_attacks_bb(s, occ) & rooks_and_queens())
|(bishop_attacks_bb(s, occ) & bishops_and_queens())) & pieces_of_color(us);
// If we have attacks we need to verify that are caused by our move
// and are not already existent ones.
return xray && (xray ^ (xray & piece_attacks<QUEEN>(s)));
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
/// Position::find_checkers() computes the checkersBB bitboard, which
/// contains a nonzero bit for each checking piece (0, 1 or 2). It
/// currently works by calling Position::attacks_to, which is probably
/// inefficient. Consider rewriting this function to use the last move
2008-08-31 23:59:13 -06:00
/// played, like in non-bitboard versions of Glaurung.
void Position::find_checkers() {
Color us = side_to_move();
st.checkersBB = attacks_to(king_square(us), opposite_color(us));
2008-08-31 23:59:13 -06:00
}
/// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal
2008-08-31 23:59:13 -06:00
bool Position::pl_move_is_legal(Move m) const {
assert(is_ok());
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
// If we're in check, all pseudo-legal moves are legal, because our
// check evasion generator only generates true legal moves.
if (is_check())
return true;
2008-08-31 23:59:13 -06:00
// Castling moves are checked for legality during move generation.
if (move_is_castle(m))
return true;
2008-08-31 23:59:13 -06:00
Color us = side_to_move();
Color them = opposite_color(us);
Square from = move_from(m);
Square ksq = king_square(us);
2008-08-31 23:59:13 -06:00
assert(color_of_piece_on(from) == us);
assert(piece_on(ksq) == piece_of_color_and_type(us, KING));
2008-08-31 23:59:13 -06:00
// En passant captures are a tricky special case. Because they are
// rather uncommon, we do it simply by testing whether the king is attacked
// after the move is made
if (move_is_ep(m))
{
Square to = move_to(m);
Square capsq = make_square(square_file(to), square_rank(from));
Bitboard b = occupied_squares();
assert(to == ep_square());
assert(piece_on(from) == piece_of_color_and_type(us, PAWN));
assert(piece_on(capsq) == piece_of_color_and_type(them, PAWN));
assert(piece_on(to) == EMPTY);
clear_bit(&b, from);
clear_bit(&b, capsq);
set_bit(&b, to);
return !(rook_attacks_bb(ksq, b) & rooks_and_queens(them))
&& !(bishop_attacks_bb(ksq, b) & bishops_and_queens(them));
2008-08-31 23:59:13 -06:00
}
// If the moving piece is a king, check whether the destination
2008-08-31 23:59:13 -06:00
// square is attacked by the opponent.
if (from == ksq)
return !(square_is_attacked(move_to(m), them));
2008-08-31 23:59:13 -06:00
// A non-king move is legal if and only if it is not pinned or it
// is moving along the ray towards or away from the king.
return ( !bit_is_set(pinned_pieces(us), from)
|| (direction_between_squares(from, ksq) == direction_between_squares(move_to(m), ksq)));
2008-08-31 23:59:13 -06:00
}
/// Position::move_is_check() tests whether a pseudo-legal move is a check
2008-08-31 23:59:13 -06:00
bool Position::move_is_check(Move m) const {
assert(is_ok());
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
Color us = side_to_move();
Color them = opposite_color(us);
Square from = move_from(m);
Square to = move_to(m);
Square ksq = king_square(them);
Bitboard dcCandidates = discovered_check_candidates(us);
assert(color_of_piece_on(from) == us);
assert(piece_on(ksq) == piece_of_color_and_type(them, KING));
2008-08-31 23:59:13 -06:00
// Proceed according to the type of the moving piece
switch (type_of_piece_on(from))
{
2008-08-31 23:59:13 -06:00
case PAWN:
if (bit_is_set(pawn_attacks(them, ksq), to)) // Normal check?
return true;
if ( bit_is_set(dcCandidates, from) // Discovered check?
&& (direction_between_squares(from, ksq) != direction_between_squares(to, ksq)))
return true;
if (move_promotion(m)) // Promotion with check?
{
Bitboard b = occupied_squares();
clear_bit(&b, from);
2008-08-31 23:59:13 -06:00
switch (move_promotion(m))
{
case KNIGHT:
return bit_is_set(piece_attacks<KNIGHT>(to), ksq);
case BISHOP:
return bit_is_set(bishop_attacks_bb(to, b), ksq);
case ROOK:
return bit_is_set(rook_attacks_bb(to, b), ksq);
case QUEEN:
return bit_is_set(queen_attacks_bb(to, b), ksq);
default:
assert(false);
}
2008-08-31 23:59:13 -06:00
}
// En passant capture with check? We have already handled the case
// of direct checks and ordinary discovered check, the only case we
// need to handle is the unusual case of a discovered check through the
// captured pawn.
else if (move_is_ep(m))
{
Square capsq = make_square(square_file(to), square_rank(from));
Bitboard b = occupied_squares();
clear_bit(&b, from);
clear_bit(&b, capsq);
set_bit(&b, to);
return (rook_attacks_bb(ksq, b) & rooks_and_queens(us))
||(bishop_attacks_bb(ksq, b) & bishops_and_queens(us));
}
return false;
2008-08-31 23:59:13 -06:00
case KNIGHT:
return bit_is_set(dcCandidates, from) // Discovered check?
|| bit_is_set(piece_attacks<KNIGHT>(ksq), to); // Normal check?
2008-08-31 23:59:13 -06:00
case BISHOP:
return bit_is_set(dcCandidates, from) // Discovered check?
|| bit_is_set(piece_attacks<BISHOP>(ksq), to); // Normal check?
2008-08-31 23:59:13 -06:00
case ROOK:
return bit_is_set(dcCandidates, from) // Discovered check?
|| bit_is_set(piece_attacks<ROOK>(ksq), to); // Normal check?
2008-08-31 23:59:13 -06:00
case QUEEN:
// Discovered checks are impossible!
assert(!bit_is_set(dcCandidates, from));
return bit_is_set(piece_attacks<QUEEN>(ksq), to); // Normal check?
2008-08-31 23:59:13 -06:00
case KING:
// Discovered check?
if ( bit_is_set(dcCandidates, from)
&& (direction_between_squares(from, ksq) != direction_between_squares(to, ksq)))
return true;
2008-08-31 23:59:13 -06:00
// Castling with check?
if (move_is_castle(m))
{
Square kfrom, kto, rfrom, rto;
Bitboard b = occupied_squares();
kfrom = from;
rfrom = to;
if (rfrom > kfrom)
{
kto = relative_square(us, SQ_G1);
rto = relative_square(us, SQ_F1);
} else {
kto = relative_square(us, SQ_C1);
rto = relative_square(us, SQ_D1);
}
clear_bit(&b, kfrom);
clear_bit(&b, rfrom);
set_bit(&b, rto);
set_bit(&b, kto);
return bit_is_set(rook_attacks_bb(rto, b), ksq);
}
return false;
default: // NO_PIECE_TYPE
break;
2008-08-31 23:59:13 -06:00
}
assert(false);
return false;
}
/// Position::move_is_capture() tests whether a move from the current
/// position is a capture. Move must not be MOVE_NONE.
2008-08-31 23:59:13 -06:00
bool Position::move_is_capture(Move m) const {
assert(m != MOVE_NONE);
return ( !square_is_empty(move_to(m))
&& (color_of_piece_on(move_to(m)) != color_of_piece_on(move_from(m)))
)
|| move_is_ep(m);
2008-08-31 23:59:13 -06:00
}
/// Position::update_checkers() is a private method to udpate chekers info
template<PieceType Piece>
inline void Position::update_checkers(Bitboard* pCheckersBB, Square ksq, Square from,
Square to, Bitboard dcCandidates) {
if (Piece != KING && bit_is_set(piece_attacks<Piece>(ksq), to))
set_bit(pCheckersBB, to);
if (Piece != QUEEN && bit_is_set(dcCandidates, from))
{
if (Piece != ROOK)
(*pCheckersBB) |= (piece_attacks<ROOK>(ksq) & rooks_and_queens(side_to_move()));
if (Piece != BISHOP)
(*pCheckersBB) |= (piece_attacks<BISHOP>(ksq) & bishops_and_queens(side_to_move()));
}
}
2008-08-31 23:59:13 -06:00
/// Position::do_move() makes a move, and backs up all information necessary
/// to undo the move to an UndoInfo object. The move is assumed to be legal.
2008-08-31 23:59:13 -06:00
/// Pseudo-legal moves should be filtered out before this function is called.
void Position::do_move(Move m, UndoInfo& u) {
assert(is_ok());
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
// Get now the current (pre-move) dc candidates that we will use
// in update_checkers().
Bitboard oldDcCandidates = discovered_check_candidates(side_to_move());
2008-08-31 23:59:13 -06:00
// Back up the necessary information to our UndoInfo object (except the
// captured piece, which is taken care of later.
u = undoInfoUnion;
u.capture = NO_PIECE_TYPE;
st.previous = &u;
2008-08-31 23:59:13 -06:00
// Save the current key to the history[] array, in order to be able to
// detect repetition draws.
history[gamePly] = st.key;
2008-08-31 23:59:13 -06:00
// Increment the 50 moves rule draw counter. Resetting it to zero in the
2008-08-31 23:59:13 -06:00
// case of non-reversible moves is taken care of later.
st.rule50++;
2008-08-31 23:59:13 -06:00
// Reset pinned bitboard and its friends
for (Color c = WHITE; c <= BLACK; c++)
st.pinners[c] = st.pinned[c] = st.dcCandidates[c] = ~EmptyBoardBB;
if (move_is_castle(m))
do_castle_move(m);
else if (move_promotion(m))
do_promotion_move(m);
else if (move_is_ep(m))
do_ep_move(m);
else
{
Color us = side_to_move();
Color them = opposite_color(us);
Square from = move_from(m);
Square to = move_to(m);
2008-08-31 23:59:13 -06:00
assert(color_of_piece_on(from) == us);
assert(color_of_piece_on(to) == them || piece_on(to) == EMPTY);
2008-08-31 23:59:13 -06:00
PieceType piece = type_of_piece_on(from);
2008-08-31 23:59:13 -06:00
st.capture = type_of_piece_on(to);
if (st.capture)
{
u.capture = st.capture;
do_capture_move(m, st.capture, them, to);
2008-08-31 23:59:13 -06:00
}
// Move the piece
2008-08-31 23:59:13 -06:00
clear_bit(&(byColorBB[us]), from);
clear_bit(&(byTypeBB[piece]), from);
clear_bit(&(byTypeBB[0]), from); // HACK: byTypeBB[0] == occupied squares
set_bit(&(byColorBB[us]), to);
set_bit(&(byTypeBB[piece]), to);
set_bit(&(byTypeBB[0]), to); // HACK: byTypeBB[0] == occupied squares
board[to] = board[from];
board[from] = EMPTY;
// Update hash key
st.key ^= zobrist[us][piece][from] ^ zobrist[us][piece][to];
2008-08-31 23:59:13 -06:00
// Update incremental scores
st.mgValue -= pst<MidGame>(us, piece, from);
st.mgValue += pst<MidGame>(us, piece, to);
st.egValue -= pst<EndGame>(us, piece, from);
st.egValue += pst<EndGame>(us, piece, to);
2008-08-31 23:59:13 -06:00
// If the moving piece was a king, update the king square
if (piece == KING)
kingSquare[us] = to;
2008-08-31 23:59:13 -06:00
// Reset en passant square
if (st.epSquare != SQ_NONE)
{
st.key ^= zobEp[st.epSquare];
st.epSquare = SQ_NONE;
2008-08-31 23:59:13 -06:00
}
// If the moving piece was a pawn do some special extra work
if (piece == PAWN)
{
// Reset rule 50 draw counter
st.rule50 = 0;
// Update pawn hash key
st.pawnKey ^= zobrist[us][PAWN][from] ^ zobrist[us][PAWN][to];
// Set en passant square, only if moved pawn can be captured
if (abs(int(to) - int(from)) == 16)
{
if ( (us == WHITE && (pawn_attacks(WHITE, from + DELTA_N) & pawns(BLACK)))
|| (us == BLACK && (pawn_attacks(BLACK, from + DELTA_S) & pawns(WHITE))))
{
st.epSquare = Square((int(from) + int(to)) / 2);
st.key ^= zobEp[st.epSquare];
}
2008-08-31 23:59:13 -06:00
}
}
// Update piece lists
2008-08-31 23:59:13 -06:00
pieceList[us][piece][index[from]] = to;
index[to] = index[from];
// Update castle rights
st.key ^= zobCastle[st.castleRights];
st.castleRights &= castleRightsMask[from];
st.castleRights &= castleRightsMask[to];
st.key ^= zobCastle[st.castleRights];
// Update checkers bitboard, piece must be already moved
st.checkersBB = EmptyBoardBB;
Square ksq = king_square(them);
switch (piece)
{
case PAWN: update_checkers<PAWN>(&st.checkersBB, ksq, from, to, oldDcCandidates); break;
case KNIGHT: update_checkers<KNIGHT>(&st.checkersBB, ksq, from, to, oldDcCandidates); break;
case BISHOP: update_checkers<BISHOP>(&st.checkersBB, ksq, from, to, oldDcCandidates); break;
case ROOK: update_checkers<ROOK>(&st.checkersBB, ksq, from, to, oldDcCandidates); break;
case QUEEN: update_checkers<QUEEN>(&st.checkersBB, ksq, from, to, oldDcCandidates); break;
case KING: update_checkers<KING>(&st.checkersBB, ksq, from, to, oldDcCandidates); break;
default: assert(false); break;
2008-08-31 23:59:13 -06:00
}
}
// Finish
st.key ^= zobSideToMove;
2008-08-31 23:59:13 -06:00
sideToMove = opposite_color(sideToMove);
gamePly++;
st.mgValue += (sideToMove == WHITE)? TempoValueMidgame : -TempoValueMidgame;
st.egValue += (sideToMove == WHITE)? TempoValueEndgame : -TempoValueEndgame;
2008-08-31 23:59:13 -06:00
assert(is_ok());
2008-08-31 23:59:13 -06:00
}
/// Position::do_capture_move() is a private method used to update captured
/// piece info. It is called from the main Position::do_move function.
void Position::do_capture_move(Move m, PieceType capture, Color them, Square to) {
assert(capture != KING);
// Remove captured piece
clear_bit(&(byColorBB[them]), to);
clear_bit(&(byTypeBB[capture]), to);
// Update hash key
st.key ^= zobrist[them][capture][to];
// If the captured piece was a pawn, update pawn hash key
if (capture == PAWN)
st.pawnKey ^= zobrist[them][PAWN][to];
// Update incremental scores
st.mgValue -= pst<MidGame>(them, capture, to);
st.egValue -= pst<EndGame>(them, capture, to);
assert(!move_promotion(m) || capture != PAWN);
// Update material
if (capture != PAWN)
npMaterial[them] -= piece_value_midgame(capture);
// Update material hash key
st.materialKey ^= zobMaterial[them][capture][pieceCount[them][capture]];
// Update piece count
pieceCount[them][capture]--;
// Update piece list
pieceList[them][capture][index[to]] = pieceList[them][capture][pieceCount[them][capture]];
index[pieceList[them][capture][index[to]]] = index[to];
// Reset rule 50 counter
st.rule50 = 0;
}
2008-08-31 23:59:13 -06:00
/// Position::do_castle_move() is a private method used to make a castling
/// move. It is called from the main Position::do_move function. Note that
2008-08-31 23:59:13 -06:00
/// castling moves are encoded as "king captures friendly rook" moves, for
/// instance white short castling in a non-Chess960 game is encoded as e1h1.
void Position::do_castle_move(Move m) {
assert(is_ok());
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
assert(move_is_castle(m));
Color us = side_to_move();
Color them = opposite_color(us);
2008-08-31 23:59:13 -06:00
// Find source squares for king and rook
Square kfrom = move_from(m);
Square rfrom = move_to(m); // HACK: See comment at beginning of function
Square kto, rto;
2008-08-31 23:59:13 -06:00
assert(piece_on(kfrom) == piece_of_color_and_type(us, KING));
assert(piece_on(rfrom) == piece_of_color_and_type(us, ROOK));
2008-08-31 23:59:13 -06:00
// Find destination squares for king and rook
if (rfrom > kfrom) // O-O
{
kto = relative_square(us, SQ_G1);
rto = relative_square(us, SQ_F1);
} else { // O-O-O
kto = relative_square(us, SQ_C1);
rto = relative_square(us, SQ_D1);
2008-08-31 23:59:13 -06:00
}
// Remove pieces from source squares
2008-08-31 23:59:13 -06:00
clear_bit(&(byColorBB[us]), kfrom);
clear_bit(&(byTypeBB[KING]), kfrom);
clear_bit(&(byTypeBB[0]), kfrom); // HACK: byTypeBB[0] == occupied squares
clear_bit(&(byColorBB[us]), rfrom);
clear_bit(&(byTypeBB[ROOK]), rfrom);
clear_bit(&(byTypeBB[0]), rfrom); // HACK: byTypeBB[0] == occupied squares
// Put pieces on destination squares
2008-08-31 23:59:13 -06:00
set_bit(&(byColorBB[us]), kto);
set_bit(&(byTypeBB[KING]), kto);
set_bit(&(byTypeBB[0]), kto); // HACK: byTypeBB[0] == occupied squares
set_bit(&(byColorBB[us]), rto);
set_bit(&(byTypeBB[ROOK]), rto);
set_bit(&(byTypeBB[0]), rto); // HACK: byTypeBB[0] == occupied squares
// Update board array
2008-08-31 23:59:13 -06:00
board[kfrom] = board[rfrom] = EMPTY;
board[kto] = piece_of_color_and_type(us, KING);
board[rto] = piece_of_color_and_type(us, ROOK);
2008-08-31 23:59:13 -06:00
// Update king square
2008-08-31 23:59:13 -06:00
kingSquare[us] = kto;
// Update piece lists
2008-08-31 23:59:13 -06:00
pieceList[us][KING][index[kfrom]] = kto;
pieceList[us][ROOK][index[rfrom]] = rto;
int tmp = index[rfrom];
index[kto] = index[kfrom];
index[rto] = tmp;
// Update incremental scores
st.mgValue -= pst<MidGame>(us, KING, kfrom);
st.mgValue += pst<MidGame>(us, KING, kto);
st.egValue -= pst<EndGame>(us, KING, kfrom);
st.egValue += pst<EndGame>(us, KING, kto);
st.mgValue -= pst<MidGame>(us, ROOK, rfrom);
st.mgValue += pst<MidGame>(us, ROOK, rto);
st.egValue -= pst<EndGame>(us, ROOK, rfrom);
st.egValue += pst<EndGame>(us, ROOK, rto);
2008-08-31 23:59:13 -06:00
// Update hash key
st.key ^= zobrist[us][KING][kfrom] ^ zobrist[us][KING][kto];
st.key ^= zobrist[us][ROOK][rfrom] ^ zobrist[us][ROOK][rto];
2008-08-31 23:59:13 -06:00
// Clear en passant square
if (st.epSquare != SQ_NONE)
{
st.key ^= zobEp[st.epSquare];
st.epSquare = SQ_NONE;
2008-08-31 23:59:13 -06:00
}
// Update castling rights
st.key ^= zobCastle[st.castleRights];
st.castleRights &= castleRightsMask[kfrom];
st.key ^= zobCastle[st.castleRights];
2008-08-31 23:59:13 -06:00
// Reset rule 50 counter
st.rule50 = 0;
2008-08-31 23:59:13 -06:00
// Update checkers BB
st.checkersBB = attacks_to(king_square(them), us);
2008-08-31 23:59:13 -06:00
}
/// Position::do_promotion_move() is a private method used to make a promotion
/// move. It is called from the main Position::do_move function. The
2008-08-31 23:59:13 -06:00
/// UndoInfo object, which has been initialized in Position::do_move, is
/// used to store the captured piece (if any).
void Position::do_promotion_move(Move m) {
2008-08-31 23:59:13 -06:00
Color us, them;
Square from, to;
PieceType promotion;
2008-08-31 23:59:13 -06:00
assert(is_ok());
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
assert(move_promotion(m));
us = side_to_move();
2008-08-31 23:59:13 -06:00
them = opposite_color(us);
from = move_from(m);
to = move_to(m);
assert(relative_rank(us, to) == RANK_8);
assert(piece_on(from) == piece_of_color_and_type(us, PAWN));
assert(color_of_piece_on(to) == them || square_is_empty(to));
2008-08-31 23:59:13 -06:00
st.capture = type_of_piece_on(to);
if (st.capture)
{
st.previous->capture = st.capture;
do_capture_move(m, st.capture, them, to);
2008-08-31 23:59:13 -06:00
}
// Remove pawn
2008-08-31 23:59:13 -06:00
clear_bit(&(byColorBB[us]), from);
clear_bit(&(byTypeBB[PAWN]), from);
clear_bit(&(byTypeBB[0]), from); // HACK: byTypeBB[0] == occupied squares
board[from] = EMPTY;
// Insert promoted piece
2008-08-31 23:59:13 -06:00
promotion = move_promotion(m);
assert(promotion >= KNIGHT && promotion <= QUEEN);
set_bit(&(byColorBB[us]), to);
set_bit(&(byTypeBB[promotion]), to);
set_bit(&(byTypeBB[0]), to); // HACK: byTypeBB[0] == occupied squares
board[to] = piece_of_color_and_type(us, promotion);
// Update hash key
st.key ^= zobrist[us][PAWN][from] ^ zobrist[us][promotion][to];
2008-08-31 23:59:13 -06:00
// Update pawn hash key
st.pawnKey ^= zobrist[us][PAWN][from];
2008-08-31 23:59:13 -06:00
// Update material key
st.materialKey ^= zobMaterial[us][PAWN][pieceCount[us][PAWN]];
st.materialKey ^= zobMaterial[us][promotion][pieceCount[us][promotion]+1];
2008-08-31 23:59:13 -06:00
// Update piece counts
2008-08-31 23:59:13 -06:00
pieceCount[us][PAWN]--;
pieceCount[us][promotion]++;
// Update piece lists
pieceList[us][PAWN][index[from]] = pieceList[us][PAWN][pieceCount[us][PAWN]];
2008-08-31 23:59:13 -06:00
index[pieceList[us][PAWN][index[from]]] = index[from];
pieceList[us][promotion][pieceCount[us][promotion] - 1] = to;
index[to] = pieceCount[us][promotion] - 1;
// Update incremental scores
st.mgValue -= pst<MidGame>(us, PAWN, from);
st.mgValue += pst<MidGame>(us, promotion, to);
st.egValue -= pst<EndGame>(us, PAWN, from);
st.egValue += pst<EndGame>(us, promotion, to);
2008-08-31 23:59:13 -06:00
// Update material
2008-08-31 23:59:13 -06:00
npMaterial[us] += piece_value_midgame(promotion);
// Clear the en passant square
if (st.epSquare != SQ_NONE)
{
st.key ^= zobEp[st.epSquare];
st.epSquare = SQ_NONE;
2008-08-31 23:59:13 -06:00
}
// Update castle rights
st.key ^= zobCastle[st.castleRights];
st.castleRights &= castleRightsMask[to];
st.key ^= zobCastle[st.castleRights];
2008-08-31 23:59:13 -06:00
// Reset rule 50 counter
st.rule50 = 0;
// Update checkers BB
st.checkersBB = attacks_to(king_square(them), us);
2008-08-31 23:59:13 -06:00
}
/// Position::do_ep_move() is a private method used to make an en passant
/// capture. It is called from the main Position::do_move function. Because
2008-08-31 23:59:13 -06:00
/// the captured piece is always a pawn, we don't need to pass an UndoInfo
/// object in which to store the captured piece.
void Position::do_ep_move(Move m) {
2008-08-31 23:59:13 -06:00
Color us, them;
Square from, to, capsq;
assert(is_ok());
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
assert(move_is_ep(m));
us = side_to_move();
2008-08-31 23:59:13 -06:00
them = opposite_color(us);
from = move_from(m);
to = move_to(m);
capsq = (us == WHITE)? (to - DELTA_N) : (to - DELTA_S);
assert(to == st.epSquare);
assert(relative_rank(us, to) == RANK_6);
assert(piece_on(to) == EMPTY);
assert(piece_on(from) == piece_of_color_and_type(us, PAWN));
assert(piece_on(capsq) == piece_of_color_and_type(them, PAWN));
2008-08-31 23:59:13 -06:00
// Remove captured piece
2008-08-31 23:59:13 -06:00
clear_bit(&(byColorBB[them]), capsq);
clear_bit(&(byTypeBB[PAWN]), capsq);
clear_bit(&(byTypeBB[0]), capsq); // HACK: byTypeBB[0] == occupied squares
board[capsq] = EMPTY;
// Remove moving piece from source square
2008-08-31 23:59:13 -06:00
clear_bit(&(byColorBB[us]), from);
clear_bit(&(byTypeBB[PAWN]), from);
clear_bit(&(byTypeBB[0]), from); // HACK: byTypeBB[0] == occupied squares
// Put moving piece on destination square
2008-08-31 23:59:13 -06:00
set_bit(&(byColorBB[us]), to);
set_bit(&(byTypeBB[PAWN]), to);
set_bit(&(byTypeBB[0]), to); // HACK: byTypeBB[0] == occupied squares
board[to] = board[from];
board[from] = EMPTY;
// Update material hash key
st.materialKey ^= zobMaterial[them][PAWN][pieceCount[them][PAWN]];
2008-08-31 23:59:13 -06:00
// Update piece count
2008-08-31 23:59:13 -06:00
pieceCount[them][PAWN]--;
// Update piece list
2008-08-31 23:59:13 -06:00
pieceList[us][PAWN][index[from]] = to;
index[to] = index[from];
pieceList[them][PAWN][index[capsq]] = pieceList[them][PAWN][pieceCount[them][PAWN]];
2008-08-31 23:59:13 -06:00
index[pieceList[them][PAWN][index[capsq]]] = index[capsq];
// Update hash key
st.key ^= zobrist[us][PAWN][from] ^ zobrist[us][PAWN][to];
st.key ^= zobrist[them][PAWN][capsq];
st.key ^= zobEp[st.epSquare];
2008-08-31 23:59:13 -06:00
// Update pawn hash key
st.pawnKey ^= zobrist[us][PAWN][from] ^ zobrist[us][PAWN][to];
st.pawnKey ^= zobrist[them][PAWN][capsq];
2008-08-31 23:59:13 -06:00
// Update incremental scores
st.mgValue -= pst<MidGame>(them, PAWN, capsq);
st.mgValue -= pst<MidGame>(us, PAWN, from);
st.mgValue += pst<MidGame>(us, PAWN, to);
st.egValue -= pst<EndGame>(them, PAWN, capsq);
st.egValue -= pst<EndGame>(us, PAWN, from);
st.egValue += pst<EndGame>(us, PAWN, to);
2008-08-31 23:59:13 -06:00
// Reset en passant square
st.epSquare = SQ_NONE;
2008-08-31 23:59:13 -06:00
// Reset rule 50 counter
st.rule50 = 0;
2008-08-31 23:59:13 -06:00
// Update checkers BB
st.checkersBB = attacks_to(king_square(them), us);
2008-08-31 23:59:13 -06:00
}
/// Position::undo_move() unmakes a move. When it returns, the position should
/// be restored to exactly the same state as before the move was made. It is
2008-08-31 23:59:13 -06:00
/// important that Position::undo_move is called with the same move and UndoInfo
/// object as the earlier call to Position::do_move.
void Position::undo_move(Move m) {
assert(is_ok());
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
gamePly--;
sideToMove = opposite_color(sideToMove);
// Restore information from our UndoInfo object (except the captured piece,
// which is taken care of later)
undoInfoUnion = *(st.previous);
2008-08-31 23:59:13 -06:00
if (move_is_castle(m))
undo_castle_move(m);
else if (move_promotion(m))
undo_promotion_move(m);
else if (move_is_ep(m))
undo_ep_move(m);
else
{
Color us, them;
Square from, to;
PieceType piece;
2008-08-31 23:59:13 -06:00
us = side_to_move();
them = opposite_color(us);
from = move_from(m);
to = move_to(m);
2008-08-31 23:59:13 -06:00
assert(piece_on(from) == EMPTY);
assert(color_of_piece_on(to) == us);
2008-08-31 23:59:13 -06:00
// Put the piece back at the source square
piece = type_of_piece_on(to);
set_bit(&(byColorBB[us]), from);
set_bit(&(byTypeBB[piece]), from);
set_bit(&(byTypeBB[0]), from); // HACK: byTypeBB[0] == occupied squares
board[from] = piece_of_color_and_type(us, piece);
// Clear the destination square
clear_bit(&(byColorBB[us]), to);
clear_bit(&(byTypeBB[piece]), to);
clear_bit(&(byTypeBB[0]), to); // HACK: byTypeBB[0] == occupied squares
// If the moving piece was a king, update the king square
if (piece == KING)
kingSquare[us] = from;
// Update piece list
pieceList[us][piece][index[to]] = from;
index[from] = index[to];
if (st.capture)
{
assert(capture != KING);
// Replace the captured piece
set_bit(&(byColorBB[them]), to);
set_bit(&(byTypeBB[st.capture]), to);
set_bit(&(byTypeBB[0]), to);
board[to] = piece_of_color_and_type(them, st.capture);
// Update material
if (st.capture != PAWN)
npMaterial[them] += piece_value_midgame(st.capture);
// Update piece list
pieceList[them][st.capture][pieceCount[them][st.capture]] = to;
index[to] = pieceCount[them][st.capture];
// Update piece count
pieceCount[them][st.capture]++;
} else
board[to] = EMPTY;
2008-08-31 23:59:13 -06:00
}
assert(is_ok());
2008-08-31 23:59:13 -06:00
}
/// Position::undo_castle_move() is a private method used to unmake a castling
/// move. It is called from the main Position::undo_move function. Note that
2008-08-31 23:59:13 -06:00
/// castling moves are encoded as "king captures friendly rook" moves, for
/// instance white short castling in a non-Chess960 game is encoded as e1h1.
void Position::undo_castle_move(Move m) {
assert(move_is_ok(m));
assert(move_is_castle(m));
// When we have arrived here, some work has already been done by
2008-08-31 23:59:13 -06:00
// Position::undo_move. In particular, the side to move has been switched,
// so the code below is correct.
Color us = side_to_move();
2008-08-31 23:59:13 -06:00
// Find source squares for king and rook
Square kfrom = move_from(m);
Square rfrom = move_to(m); // HACK: See comment at beginning of function
Square kto, rto;
2008-08-31 23:59:13 -06:00
// Find destination squares for king and rook
if (rfrom > kfrom) // O-O
{
kto = relative_square(us, SQ_G1);
rto = relative_square(us, SQ_F1);
} else { // O-O-O
kto = relative_square(us, SQ_C1);
rto = relative_square(us, SQ_D1);
2008-08-31 23:59:13 -06:00
}
assert(piece_on(kto) == piece_of_color_and_type(us, KING));
assert(piece_on(rto) == piece_of_color_and_type(us, ROOK));
2008-08-31 23:59:13 -06:00
// Remove pieces from destination squares
2008-08-31 23:59:13 -06:00
clear_bit(&(byColorBB[us]), kto);
clear_bit(&(byTypeBB[KING]), kto);
clear_bit(&(byTypeBB[0]), kto); // HACK: byTypeBB[0] == occupied squares
clear_bit(&(byColorBB[us]), rto);
clear_bit(&(byTypeBB[ROOK]), rto);
clear_bit(&(byTypeBB[0]), rto); // HACK: byTypeBB[0] == occupied squares
// Put pieces on source squares
2008-08-31 23:59:13 -06:00
set_bit(&(byColorBB[us]), kfrom);
set_bit(&(byTypeBB[KING]), kfrom);
set_bit(&(byTypeBB[0]), kfrom); // HACK: byTypeBB[0] == occupied squares
set_bit(&(byColorBB[us]), rfrom);
set_bit(&(byTypeBB[ROOK]), rfrom);
set_bit(&(byTypeBB[0]), rfrom); // HACK: byTypeBB[0] == occupied squares
// Update board
2008-08-31 23:59:13 -06:00
board[rto] = board[kto] = EMPTY;
board[rfrom] = piece_of_color_and_type(us, ROOK);
board[kfrom] = piece_of_color_and_type(us, KING);
2008-08-31 23:59:13 -06:00
// Update king square
2008-08-31 23:59:13 -06:00
kingSquare[us] = kfrom;
// Update piece lists
2008-08-31 23:59:13 -06:00
pieceList[us][KING][index[kto]] = kfrom;
pieceList[us][ROOK][index[rto]] = rfrom;
int tmp = index[rto]; // Necessary because we may have rto == kfrom in FRC.
index[kfrom] = index[kto];
index[rfrom] = tmp;
}
/// Position::undo_promotion_move() is a private method used to unmake a
/// promotion move. It is called from the main Position::do_move
/// function. The UndoInfo object, which has been initialized in
2008-08-31 23:59:13 -06:00
/// Position::do_move, is used to put back the captured piece (if any).
void Position::undo_promotion_move(Move m) {
2008-08-31 23:59:13 -06:00
Color us, them;
Square from, to;
PieceType promotion;
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
assert(move_promotion(m));
// When we have arrived here, some work has already been done by
2008-08-31 23:59:13 -06:00
// Position::undo_move. In particular, the side to move has been switched,
// so the code below is correct.
us = side_to_move();
2008-08-31 23:59:13 -06:00
them = opposite_color(us);
from = move_from(m);
to = move_to(m);
assert(relative_rank(us, to) == RANK_8);
assert(piece_on(from) == EMPTY);
2008-08-31 23:59:13 -06:00
// Remove promoted piece
2008-08-31 23:59:13 -06:00
promotion = move_promotion(m);
assert(piece_on(to)==piece_of_color_and_type(us, promotion));
2008-08-31 23:59:13 -06:00
assert(promotion >= KNIGHT && promotion <= QUEEN);
clear_bit(&(byColorBB[us]), to);
clear_bit(&(byTypeBB[promotion]), to);
clear_bit(&(byTypeBB[0]), to); // HACK: byTypeBB[0] == occupied squares
// Insert pawn at source square
2008-08-31 23:59:13 -06:00
set_bit(&(byColorBB[us]), from);
set_bit(&(byTypeBB[PAWN]), from);
set_bit(&(byTypeBB[0]), from); // HACK: byTypeBB[0] == occupied squares
board[from] = piece_of_color_and_type(us, PAWN);
2008-08-31 23:59:13 -06:00
// Update material
2008-08-31 23:59:13 -06:00
npMaterial[us] -= piece_value_midgame(promotion);
// Update piece list
2008-08-31 23:59:13 -06:00
pieceList[us][PAWN][pieceCount[us][PAWN]] = from;
index[from] = pieceCount[us][PAWN];
pieceList[us][promotion][index[to]] =
pieceList[us][promotion][pieceCount[us][promotion] - 1];
index[pieceList[us][promotion][index[to]]] = index[to];
// Update piece counts
2008-08-31 23:59:13 -06:00
pieceCount[us][promotion]--;
pieceCount[us][PAWN]++;
if (st.capture)
{
assert(capture != KING);
2008-08-31 23:59:13 -06:00
// Insert captured piece:
set_bit(&(byColorBB[them]), to);
set_bit(&(byTypeBB[st.capture]), to);
set_bit(&(byTypeBB[0]), to); // HACK: byTypeBB[0] == occupied squares
board[to] = piece_of_color_and_type(them, st.capture);
2008-08-31 23:59:13 -06:00
// Update material. Because the move is a promotion move, we know
// that the captured piece cannot be a pawn.
assert(capture != PAWN);
npMaterial[them] += piece_value_midgame(st.capture);
2008-08-31 23:59:13 -06:00
// Update piece list
pieceList[them][st.capture][pieceCount[them][st.capture]] = to;
index[to] = pieceCount[them][st.capture];
// Update piece count
pieceCount[them][st.capture]++;
} else
board[to] = EMPTY;
2008-08-31 23:59:13 -06:00
}
/// Position::undo_ep_move() is a private method used to unmake an en passant
/// capture. It is called from the main Position::undo_move function. Because
2008-08-31 23:59:13 -06:00
/// the captured piece is always a pawn, we don't need to pass an UndoInfo
/// object from which to retrieve the captured piece.
void Position::undo_ep_move(Move m) {
assert(move_is_ok(m));
assert(move_is_ep(m));
// When we have arrived here, some work has already been done by
// Position::undo_move. In particular, the side to move has been switched,
2008-08-31 23:59:13 -06:00
// so the code below is correct.
Color us = side_to_move();
Color them = opposite_color(us);
Square from = move_from(m);
Square to = move_to(m);
Square capsq = (us == WHITE)? (to - DELTA_N) : (to - DELTA_S);
2008-08-31 23:59:13 -06:00
assert(to == ep_square());
assert(relative_rank(us, to) == RANK_6);
assert(piece_on(to) == piece_of_color_and_type(us, PAWN));
assert(piece_on(from) == EMPTY);
assert(piece_on(capsq) == EMPTY);
2008-08-31 23:59:13 -06:00
// Replace captured piece
2008-08-31 23:59:13 -06:00
set_bit(&(byColorBB[them]), capsq);
set_bit(&(byTypeBB[PAWN]), capsq);
set_bit(&(byTypeBB[0]), capsq);
board[capsq] = piece_of_color_and_type(them, PAWN);
2008-08-31 23:59:13 -06:00
// Remove moving piece from destination square
2008-08-31 23:59:13 -06:00
clear_bit(&(byColorBB[us]), to);
clear_bit(&(byTypeBB[PAWN]), to);
clear_bit(&(byTypeBB[0]), to);
board[to] = EMPTY;
// Replace moving piece at source square
2008-08-31 23:59:13 -06:00
set_bit(&(byColorBB[us]), from);
set_bit(&(byTypeBB[PAWN]), from);
set_bit(&(byTypeBB[0]), from);
board[from] = piece_of_color_and_type(us, PAWN);
2008-08-31 23:59:13 -06:00
// Update piece list:
pieceList[us][PAWN][index[to]] = from;
index[from] = index[to];
pieceList[them][PAWN][pieceCount[them][PAWN]] = capsq;
index[capsq] = pieceCount[them][PAWN];
// Update piece count:
pieceCount[them][PAWN]++;
}
/// Position::do_null_move makes() a "null move": It switches the side to move
/// and updates the hash key without executing any move on the board.
void Position::do_null_move(UndoInfo& u) {
assert(is_ok());
assert(!is_check());
2008-08-31 23:59:13 -06:00
// Back up the information necessary to undo the null move to the supplied
// UndoInfo object. In the case of a null move, the only thing we need to
2008-08-31 23:59:13 -06:00
// remember is the last move made and the en passant square.
u.lastMove = st.lastMove;
u.epSquare = st.epSquare;
u.previous = st.previous;
st.previous = &u;
2008-08-31 23:59:13 -06:00
// Save the current key to the history[] array, in order to be able to
// detect repetition draws.
history[gamePly] = st.key;
2008-08-31 23:59:13 -06:00
// Update the necessary information
2008-08-31 23:59:13 -06:00
sideToMove = opposite_color(sideToMove);
if (st.epSquare != SQ_NONE)
st.key ^= zobEp[st.epSquare];
st.epSquare = SQ_NONE;
st.rule50++;
2008-08-31 23:59:13 -06:00
gamePly++;
st.key ^= zobSideToMove;
2008-08-31 23:59:13 -06:00
st.mgValue += (sideToMove == WHITE)? TempoValueMidgame : -TempoValueMidgame;
st.egValue += (sideToMove == WHITE)? TempoValueEndgame : -TempoValueEndgame;
assert(is_ok());
2008-08-31 23:59:13 -06:00
}
/// Position::undo_null_move() unmakes a "null move".
void Position::undo_null_move() {
assert(is_ok());
assert(!is_check());
// Restore information from the our UndoInfo object
st.lastMove = st.previous->lastMove;
st.epSquare = st.previous->epSquare;
st.previous = st.previous->previous;
if (st.epSquare != SQ_NONE)
st.key ^= zobEp[st.epSquare];
2008-08-31 23:59:13 -06:00
// Update the necessary information
2008-08-31 23:59:13 -06:00
sideToMove = opposite_color(sideToMove);
st.rule50--;
2008-08-31 23:59:13 -06:00
gamePly--;
st.key ^= zobSideToMove;
2008-08-31 23:59:13 -06:00
st.mgValue += (sideToMove == WHITE)? TempoValueMidgame : -TempoValueMidgame;
st.egValue += (sideToMove == WHITE)? TempoValueEndgame : -TempoValueEndgame;
assert(is_ok());
2008-08-31 23:59:13 -06:00
}
/// Position::see() is a static exchange evaluator: It tries to estimate the
/// material gain or loss resulting from a move. There are three versions of
/// this function: One which takes a destination square as input, one takes a
/// move, and one which takes a 'from' and a 'to' square. The function does
/// not yet understand promotions captures.
int Position::see(Square to) const {
assert(square_is_ok(to));
return see(SQ_NONE, to);
}
2008-08-31 23:59:13 -06:00
int Position::see(Move m) const {
assert(move_is_ok(m));
return see(move_from(m), move_to(m));
}
2008-08-31 23:59:13 -06:00
int Position::see(Square from, Square to) const {
// Material values
2008-08-31 23:59:13 -06:00
static const int seeValues[18] = {
0, PawnValueMidgame, KnightValueMidgame, BishopValueMidgame,
RookValueMidgame, QueenValueMidgame, QueenValueMidgame*10, 0,
0, PawnValueMidgame, KnightValueMidgame, BishopValueMidgame,
RookValueMidgame, QueenValueMidgame, QueenValueMidgame*10, 0,
0, 0
2008-08-31 23:59:13 -06:00
};
2008-08-31 23:59:13 -06:00
Bitboard attackers, occ, b;
assert(square_is_ok(from) || from == SQ_NONE);
2008-08-31 23:59:13 -06:00
assert(square_is_ok(to));
// Initialize colors
Color us = (from != SQ_NONE ? color_of_piece_on(from) : opposite_color(color_of_piece_on(to)));
Color them = opposite_color(us);
2008-08-31 23:59:13 -06:00
// Initialize pieces
Piece piece = piece_on(from);
Piece capture = piece_on(to);
2008-08-31 23:59:13 -06:00
// Find all attackers to the destination square, with the moving piece
// removed, but possibly an X-ray attacker added behind it.
occ = occupied_squares();
// Handle en passant moves
if (st.epSquare == to && type_of_piece_on(from) == PAWN)
{
assert(capture == EMPTY);
Square capQq = (side_to_move() == WHITE)? (to - DELTA_N) : (to - DELTA_S);
capture = piece_on(capQq);
assert(type_of_piece_on(capQq) == PAWN);
// Remove the captured pawn
clear_bit(&occ, capQq);
}
while (true)
{
clear_bit(&occ, from);
attackers = (rook_attacks_bb(to, occ) & rooks_and_queens())
| (bishop_attacks_bb(to, occ) & bishops_and_queens())
| (piece_attacks<KNIGHT>(to) & knights())
| (piece_attacks<KING>(to) & kings())
| (pawn_attacks(WHITE, to) & pawns(BLACK))
| (pawn_attacks(BLACK, to) & pawns(WHITE));
if (from != SQ_NONE)
break;
// If we don't have any attacker we are finished
if ((attackers & pieces_of_color(us)) == EmptyBoardBB)
return 0;
// Locate the least valuable attacker to the destination square
// and use it to initialize from square.
PieceType pt;
for (pt = PAWN; !(attackers & pieces_of_color_and_type(us, pt)); pt++)
assert(pt < KING);
from = first_1(attackers & pieces_of_color_and_type(us, pt));
piece = piece_on(from);
}
// If the opponent has no attackers we are finished
if ((attackers & pieces_of_color(them)) == EmptyBoardBB)
return seeValues[capture];
2008-08-31 23:59:13 -06:00
attackers &= occ; // Remove the moving piece
2008-08-31 23:59:13 -06:00
// The destination square is defended, which makes things rather more
// difficult to compute. We proceed by building up a "swap list" containing
2008-08-31 23:59:13 -06:00
// the material gain or loss at each stop in a sequence of captures to the
// destination square, where the sides alternately capture, and always
// capture with the least valuable piece. After each capture, we look for
2008-08-31 23:59:13 -06:00
// new X-ray attacks from behind the capturing piece.
int lastCapturingPieceValue = seeValues[piece];
int swapList[32], n = 1;
Color c = them;
PieceType pt;
swapList[0] = seeValues[capture];
do {
// Locate the least valuable attacker for the side to move. The loop
// below looks like it is potentially infinite, but it isn't. We know
// that the side to move still has at least one attacker left.
for (pt = PAWN; !(attackers & pieces_of_color_and_type(c, pt)); pt++)
assert(pt < KING);
// Remove the attacker we just found from the 'attackers' bitboard,
// and scan for new X-ray attacks behind the attacker.
b = attackers & pieces_of_color_and_type(c, pt);
occ ^= (b & -b);
attackers |= (rook_attacks_bb(to, occ) & rooks_and_queens())
| (bishop_attacks_bb(to, occ) & bishops_and_queens());
attackers &= occ;
// Add the new entry to the swap list
2008-08-31 23:59:13 -06:00
assert(n < 32);
swapList[n] = -swapList[n - 1] + lastCapturingPieceValue;
n++;
2008-08-31 23:59:13 -06:00
// Remember the value of the capturing piece, and change the side to move
// before beginning the next iteration
lastCapturingPieceValue = seeValues[pt];
c = opposite_color(c);
2008-08-31 23:59:13 -06:00
// Stop after a king capture
if (pt == KING && (attackers & pieces_of_color(c)))
{
assert(n < 32);
swapList[n++] = 100;
break;
}
} while (attackers & pieces_of_color(c));
2008-08-31 23:59:13 -06:00
// Having built the swap list, we negamax through it to find the best
// achievable score from the point of view of the side to move
while (--n)
swapList[n-1] = Min(-swapList[n], swapList[n-1]);
2008-08-31 23:59:13 -06:00
return swapList[0];
2008-08-31 23:59:13 -06:00
}
/// Position::clear() erases the position object to a pristine state, with an
/// empty board, white to move, and no castling rights.
void Position::clear() {
for (int i = 0; i < 64; i++)
{
board[i] = EMPTY;
index[i] = 0;
2008-08-31 23:59:13 -06:00
}
for (int i = 0; i < 2; i++)
byColorBB[i] = EmptyBoardBB;
2008-08-31 23:59:13 -06:00
for (int i = 0; i < 7; i++)
{
byTypeBB[i] = EmptyBoardBB;
pieceCount[0][i] = pieceCount[1][i] = 0;
for (int j = 0; j < 8; j++)
pieceList[0][i][j] = pieceList[1][i][j] = SQ_NONE;
2008-08-31 23:59:13 -06:00
}
st.checkersBB = EmptyBoardBB;
for (Color c = WHITE; c <= BLACK; c++)
st.pinners[c] = st.pinned[c] = st.dcCandidates[c] = ~EmptyBoardBB;
st.lastMove = MOVE_NONE;
2008-08-31 23:59:13 -06:00
sideToMove = WHITE;
st.castleRights = NO_CASTLES;
2008-08-31 23:59:13 -06:00
initialKFile = FILE_E;
initialKRFile = FILE_H;
initialQRFile = FILE_A;
st.epSquare = SQ_NONE;
st.rule50 = 0;
st.previous = NULL;
2008-08-31 23:59:13 -06:00
gamePly = 0;
}
/// Position::reset_game_ply() simply sets gamePly to 0. It is used from the
2008-08-31 23:59:13 -06:00
/// UCI interface code, whenever a non-reversible move is made in a
/// 'position fen <fen> moves m1 m2 ...' command. This makes it possible
/// for the program to handle games of arbitrary length, as long as the GUI
/// handles draws by the 50 move rule correctly.
void Position::reset_game_ply() {
2008-08-31 23:59:13 -06:00
gamePly = 0;
}
2008-08-31 23:59:13 -06:00
/// Position::put_piece() puts a piece on the given square of the board,
/// updating the board array, bitboards, and piece counts.
void Position::put_piece(Piece p, Square s) {
2008-08-31 23:59:13 -06:00
Color c = color_of_piece(p);
PieceType pt = type_of_piece(p);
board[s] = p;
index[s] = pieceCount[c][pt];
pieceList[c][pt][index[s]] = s;
set_bit(&(byTypeBB[pt]), s);
set_bit(&(byColorBB[c]), s);
set_bit(&byTypeBB[0], s); // HACK: byTypeBB[0] contains all occupied squares.
pieceCount[c][pt]++;
if (pt == KING)
kingSquare[c] = s;
2008-08-31 23:59:13 -06:00
}
/// Position::allow_oo() gives the given side the right to castle kingside.
2008-08-31 23:59:13 -06:00
/// Used when setting castling rights during parsing of FEN strings.
void Position::allow_oo(Color c) {
st.castleRights |= (1 + int(c));
2008-08-31 23:59:13 -06:00
}
/// Position::allow_ooo() gives the given side the right to castle queenside.
/// Used when setting castling rights during parsing of FEN strings.
void Position::allow_ooo(Color c) {
st.castleRights |= (4 + 4*int(c));
2008-08-31 23:59:13 -06:00
}
/// Position::compute_key() computes the hash key of the position. The hash
2008-08-31 23:59:13 -06:00
/// key is usually updated incrementally as moves are made and unmade, the
/// compute_key() function is only used when a new position is set up, and
/// to verify the correctness of the hash key when running in debug mode.
Key Position::compute_key() const {
2008-08-31 23:59:13 -06:00
Key result = Key(0ULL);
for (Square s = SQ_A1; s <= SQ_H8; s++)
if (square_is_occupied(s))
result ^= zobrist[color_of_piece_on(s)][type_of_piece_on(s)][s];
if (ep_square() != SQ_NONE)
result ^= zobEp[ep_square()];
result ^= zobCastle[st.castleRights];
if (side_to_move() == BLACK)
result ^= zobSideToMove;
2008-08-31 23:59:13 -06:00
return result;
}
/// Position::compute_pawn_key() computes the hash key of the position. The
/// hash key is usually updated incrementally as moves are made and unmade,
/// the compute_pawn_key() function is only used when a new position is set
/// up, and to verify the correctness of the pawn hash key when running in
2008-08-31 23:59:13 -06:00
/// debug mode.
Key Position::compute_pawn_key() const {
2008-08-31 23:59:13 -06:00
Key result = Key(0ULL);
Bitboard b;
Square s;
for (Color c = WHITE; c <= BLACK; c++)
{
b = pawns(c);
while(b)
{
s = pop_1st_bit(&b);
result ^= zobrist[c][PAWN][s];
}
2008-08-31 23:59:13 -06:00
}
return result;
}
/// Position::compute_material_key() computes the hash key of the position.
/// The hash key is usually updated incrementally as moves are made and unmade,
/// the compute_material_key() function is only used when a new position is set
/// up, and to verify the correctness of the material hash key when running in
/// debug mode.
Key Position::compute_material_key() const {
2008-08-31 23:59:13 -06:00
Key result = Key(0ULL);
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= QUEEN; pt++)
{
int count = piece_count(c, pt);
for (int i = 0; i <= count; i++)
result ^= zobMaterial[c][pt][i];
}
2008-08-31 23:59:13 -06:00
return result;
}
2008-08-31 23:59:13 -06:00
/// Position::compute_value() compute the incremental scores for the middle
/// game and the endgame. These functions are used to initialize the incremental
/// scores when a new position is set up, and to verify that the scores are correctly
/// updated by do_move and undo_move when the program is running in debug mode.
template<Position::GamePhase Phase>
Value Position::compute_value() const {
2008-08-31 23:59:13 -06:00
Value result = Value(0);
Bitboard b;
Square s;
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
{
b = pieces_of_color_and_type(c, pt);
while(b)
{
s = pop_1st_bit(&b);
assert(piece_on(s) == piece_of_color_and_type(c, pt));
result += pst<Phase>(c, pt, s);
}
2008-08-31 23:59:13 -06:00
}
const Value TempoValue = (Phase == MidGame ? TempoValueMidgame : TempoValueEndgame);
result += (side_to_move() == WHITE)? TempoValue / 2 : -TempoValue / 2;
2008-08-31 23:59:13 -06:00
return result;
}
/// Position::compute_non_pawn_material() computes the total non-pawn middle
/// game material score for the given side. Material scores are updated
2008-08-31 23:59:13 -06:00
/// incrementally during the search, this function is only used while
/// initializing a new Position object.
Value Position::compute_non_pawn_material(Color c) const {
2008-08-31 23:59:13 -06:00
Value result = Value(0);
Square s;
for (PieceType pt = KNIGHT; pt <= QUEEN; pt++)
{
Bitboard b = pieces_of_color_and_type(c, pt);
while(b)
{
s = pop_1st_bit(&b);
assert(piece_on(s) == piece_of_color_and_type(c, pt));
result += piece_value_midgame(pt);
}
2008-08-31 23:59:13 -06:00
}
return result;
}
/// Position::is_mate() returns true or false depending on whether the
/// side to move is checkmated. Note that this function is currently very
2008-08-31 23:59:13 -06:00
/// slow, and shouldn't be used frequently inside the search.
bool Position::is_mate() const {
if (is_check())
{
MovePicker mp = MovePicker(*this, false, MOVE_NONE, EmptySearchStack, Depth(0));
return mp.get_next_move() == MOVE_NONE;
2008-08-31 23:59:13 -06:00
}
return false;
2008-08-31 23:59:13 -06:00
}
/// Position::is_draw() tests whether the position is drawn by material,
/// repetition, or the 50 moves rule. It does not detect stalemates, this
2008-08-31 23:59:13 -06:00
/// must be done by the search.
bool Position::is_draw() const {
2008-08-31 23:59:13 -06:00
// Draw by material?
if ( !pawns()
&& (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMidgame))
return true;
2008-08-31 23:59:13 -06:00
// Draw by the 50 moves rule?
if (st.rule50 > 100 || (st.rule50 == 100 && !is_check()))
return true;
2008-08-31 23:59:13 -06:00
// Draw by repetition?
for (int i = 2; i < Min(gamePly, st.rule50); i += 2)
if (history[gamePly - i] == st.key)
return true;
2008-08-31 23:59:13 -06:00
return false;
}
/// Position::has_mate_threat() tests whether a given color has a mate in one
/// from the current position. This function is quite slow, but it doesn't
2008-08-31 23:59:13 -06:00
/// matter, because it is currently only called from PV nodes, which are rare.
bool Position::has_mate_threat(Color c) {
2008-08-31 23:59:13 -06:00
UndoInfo u1, u2;
Color stm = side_to_move();
2008-08-31 23:59:13 -06:00
// The following lines are useless and silly, but prevents gcc from
// emitting a stupid warning stating that u1.lastMove and u1.epSquare might
// be used uninitialized.
u1.lastMove = st.lastMove;
u1.epSquare = st.epSquare;
2008-08-31 23:59:13 -06:00
if (is_check())
return false;
2008-08-31 23:59:13 -06:00
// If the input color is not equal to the side to move, do a null move
if (c != stm)
do_null_move(u1);
2008-08-31 23:59:13 -06:00
MoveStack mlist[120];
int count;
bool result = false;
// Generate legal moves
count = generate_legal_moves(*this, mlist);
// Loop through the moves, and see if one of them is mate
for (int i = 0; i < count; i++)
{
do_move(mlist[i].move, u2);
if (is_mate())
result = true;
undo_move(mlist[i].move);
2008-08-31 23:59:13 -06:00
}
// Undo null move, if necessary
if (c != stm)
undo_null_move();
2008-08-31 23:59:13 -06:00
return result;
}
/// Position::init_zobrist() is a static member function which initializes the
/// various arrays used to compute hash keys.
void Position::init_zobrist() {
for (int i = 0; i < 2; i++)
for (int j = 0; j < 8; j++)
for (int k = 0; k < 64; k++)
zobrist[i][j][k] = Key(genrand_int64());
for (int i = 0; i < 64; i++)
zobEp[i] = Key(genrand_int64());
for (int i = 0; i < 16; i++)
zobCastle[i] = genrand_int64();
2008-08-31 23:59:13 -06:00
zobSideToMove = genrand_int64();
for (int i = 0; i < 2; i++)
for (int j = 0; j < 8; j++)
for (int k = 0; k < 16; k++)
zobMaterial[i][j][k] = (k > 0)? Key(genrand_int64()) : Key(0LL);
2008-08-31 23:59:13 -06:00
for (int i = 0; i < 16; i++)
zobMaterial[0][KING][i] = zobMaterial[1][KING][i] = Key(0ULL);
2008-08-31 23:59:13 -06:00
}
/// Position::init_piece_square_tables() initializes the piece square tables.
/// This is a two-step operation: First, the white halves of the tables are
/// copied from the MgPST[][] and EgPST[][] arrays, with a small random number
/// added to each entry if the "Randomness" UCI parameter is non-zero.
/// Second, the black halves of the tables are initialized by mirroring
/// and changing the sign of the corresponding white scores.
void Position::init_piece_square_tables() {
2008-08-31 23:59:13 -06:00
int r = get_option_value_int("Randomness"), i;
for (Square s = SQ_A1; s <= SQ_H8; s++)
for (Piece p = WP; p <= WK; p++)
{
i = (r == 0)? 0 : (genrand_int32() % (r*2) - r);
MgPieceSquareTable[p][s] = Value(MgPST[p][s] + i);
EgPieceSquareTable[p][s] = Value(EgPST[p][s] + i);
}
for (Square s = SQ_A1; s <= SQ_H8; s++)
for (Piece p = BP; p <= BK; p++)
{
MgPieceSquareTable[p][s] = -MgPieceSquareTable[p-8][flip_square(s)];
EgPieceSquareTable[p][s] = -EgPieceSquareTable[p-8][flip_square(s)];
}
2008-08-31 23:59:13 -06:00
}
/// Position::flipped_copy() makes a copy of the input position, but with
/// the white and black sides reversed. This is only useful for debugging,
2008-08-31 23:59:13 -06:00
/// especially for finding evaluation symmetry bugs.
void Position::flipped_copy(const Position &pos) {
2008-08-31 23:59:13 -06:00
assert(pos.is_ok());
clear();
2008-08-31 23:59:13 -06:00
// Board
for (Square s = SQ_A1; s <= SQ_H8; s++)
if (!pos.square_is_empty(s))
put_piece(Piece(int(pos.piece_on(s)) ^ 8), flip_square(s));
2008-08-31 23:59:13 -06:00
// Side to move
sideToMove = opposite_color(pos.side_to_move());
// Castling rights
if (pos.can_castle_kingside(WHITE)) allow_oo(BLACK);
if (pos.can_castle_queenside(WHITE)) allow_ooo(BLACK);
if (pos.can_castle_kingside(BLACK)) allow_oo(WHITE);
if (pos.can_castle_queenside(BLACK)) allow_ooo(WHITE);
2008-08-31 23:59:13 -06:00
initialKFile = pos.initialKFile;
2008-08-31 23:59:13 -06:00
initialKRFile = pos.initialKRFile;
initialQRFile = pos.initialQRFile;
for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
castleRightsMask[sq] = ALL_CASTLES;
castleRightsMask[make_square(initialKFile, RANK_1)] ^= (WHITE_OO | WHITE_OOO);
castleRightsMask[make_square(initialKFile, RANK_8)] ^= (BLACK_OO | BLACK_OOO);
castleRightsMask[make_square(initialKRFile, RANK_1)] ^= WHITE_OO;
castleRightsMask[make_square(initialKRFile, RANK_8)] ^= BLACK_OO;
castleRightsMask[make_square(initialQRFile, RANK_1)] ^= WHITE_OOO;
castleRightsMask[make_square(initialQRFile, RANK_8)] ^= BLACK_OOO;
2008-08-31 23:59:13 -06:00
// En passant square
if (pos.st.epSquare != SQ_NONE)
st.epSquare = flip_square(pos.st.epSquare);
2008-08-31 23:59:13 -06:00
// Checkers
find_checkers();
2008-08-31 23:59:13 -06:00
// Hash keys
st.key = compute_key();
st.pawnKey = compute_pawn_key();
st.materialKey = compute_material_key();
2008-08-31 23:59:13 -06:00
// Incremental scores
st.mgValue = compute_value<MidGame>();
st.egValue = compute_value<EndGame>();
2008-08-31 23:59:13 -06:00
// Material
npMaterial[WHITE] = compute_non_pawn_material(WHITE);
npMaterial[BLACK] = compute_non_pawn_material(BLACK);
2008-08-31 23:59:13 -06:00
assert(is_ok());
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
/// Position::is_ok() performs some consitency checks for the position object.
/// This is meant to be helpful when debugging.
bool Position::is_ok(int* failedStep) const {
2008-08-31 23:59:13 -06:00
// What features of the position should be verified?
static const bool debugBitboards = false;
static const bool debugKingCount = false;
static const bool debugKingCapture = false;
static const bool debugCheckerCount = false;
static const bool debugKey = false;
static const bool debugMaterialKey = false;
static const bool debugPawnKey = false;
static const bool debugIncrementalEval = false;
static const bool debugNonPawnMaterial = false;
static const bool debugPieceCounts = false;
static const bool debugPieceList = false;
if (failedStep) *failedStep = 1;
2008-08-31 23:59:13 -06:00
// Side to move OK?
if (!color_is_ok(side_to_move()))
return false;
2008-08-31 23:59:13 -06:00
// Are the king squares in the position correct?
if (failedStep) (*failedStep)++;
if (piece_on(king_square(WHITE)) != WK)
return false;
if (failedStep) (*failedStep)++;
if (piece_on(king_square(BLACK)) != BK)
return false;
2008-08-31 23:59:13 -06:00
// Castle files OK?
if (failedStep) (*failedStep)++;
if (!file_is_ok(initialKRFile))
return false;
if (!file_is_ok(initialQRFile))
return false;
2008-08-31 23:59:13 -06:00
// Do both sides have exactly one king?
if (failedStep) (*failedStep)++;
if (debugKingCount)
{
int kingCount[2] = {0, 0};
for (Square s = SQ_A1; s <= SQ_H8; s++)
if (type_of_piece_on(s) == KING)
kingCount[color_of_piece_on(s)]++;
if (kingCount[0] != 1 || kingCount[1] != 1)
return false;
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
// Can the side to move capture the opponent's king?
if (failedStep) (*failedStep)++;
if (debugKingCapture)
{
Color us = side_to_move();
Color them = opposite_color(us);
Square ksq = king_square(them);
if (square_is_attacked(ksq, us))
return false;
2008-08-31 23:59:13 -06:00
}
// Is there more than 2 checkers?
if (failedStep) (*failedStep)++;
if (debugCheckerCount && count_1s(st.checkersBB) > 2)
return false;
2008-08-31 23:59:13 -06:00
// Bitboards OK?
if (failedStep) (*failedStep)++;
if (debugBitboards)
{
// The intersection of the white and black pieces must be empty
if ((pieces_of_color(WHITE) & pieces_of_color(BLACK)) != EmptyBoardBB)
return false;
2008-08-31 23:59:13 -06:00
// The union of the white and black pieces must be equal to all
// occupied squares
if ((pieces_of_color(WHITE) | pieces_of_color(BLACK)) != occupied_squares())
2008-08-31 23:59:13 -06:00
return false;
// Separate piece type bitboards must have empty intersections
for (PieceType p1 = PAWN; p1 <= KING; p1++)
for (PieceType p2 = PAWN; p2 <= KING; p2++)
if (p1 != p2 && (pieces_of_type(p1) & pieces_of_type(p2)))
return false;
2008-08-31 23:59:13 -06:00
}
// En passant square OK?
if (failedStep) (*failedStep)++;
if (ep_square() != SQ_NONE)
{
// The en passant square must be on rank 6, from the point of view of the
// side to move.
if (relative_rank(side_to_move(), ep_square()) != RANK_6)
return false;
2008-08-31 23:59:13 -06:00
}
// Hash key OK?
if (failedStep) (*failedStep)++;
if (debugKey && st.key != compute_key())
return false;
2008-08-31 23:59:13 -06:00
// Pawn hash key OK?
if (failedStep) (*failedStep)++;
if (debugPawnKey && st.pawnKey != compute_pawn_key())
return false;
2008-08-31 23:59:13 -06:00
// Material hash key OK?
if (failedStep) (*failedStep)++;
if (debugMaterialKey && st.materialKey != compute_material_key())
return false;
2008-08-31 23:59:13 -06:00
// Incremental eval OK?
if (failedStep) (*failedStep)++;
if (debugIncrementalEval)
{
if (st.mgValue != compute_value<MidGame>())
return false;
if (st.egValue != compute_value<EndGame>())
return false;
2008-08-31 23:59:13 -06:00
}
// Non-pawn material OK?
if (failedStep) (*failedStep)++;
if (debugNonPawnMaterial)
{
if (npMaterial[WHITE] != compute_non_pawn_material(WHITE))
return false;
if (npMaterial[BLACK] != compute_non_pawn_material(BLACK))
return false;
2008-08-31 23:59:13 -06:00
}
// Piece counts OK?
if (failedStep) (*failedStep)++;
if (debugPieceCounts)
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
if (pieceCount[c][pt] != count_1s(pieces_of_color_and_type(c, pt)))
return false;
2008-08-31 23:59:13 -06:00
if (failedStep) (*failedStep)++;
if (debugPieceList)
{
for(Color c = WHITE; c <= BLACK; c++)
for(PieceType pt = PAWN; pt <= KING; pt++)
for(int i = 0; i < pieceCount[c][pt]; i++)
{
if (piece_on(piece_list(c, pt, i)) != piece_of_color_and_type(c, pt))
return false;
if (index[piece_list(c, pt, i)] != i)
return false;
}
2008-08-31 23:59:13 -06:00
}
if (failedStep) *failedStep = 0;
2008-08-31 23:59:13 -06:00
return true;
}