1
0
Fork 0
stockfish/src/search.cpp

3095 lines
102 KiB
C++
Raw Normal View History

2008-08-31 23:59:13 -06:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2009 Marco Costalba
2008-08-31 23:59:13 -06:00
Stockfish is free software: you can redistribute it and/or modify
2008-08-31 23:59:13 -06:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
2008-08-31 23:59:13 -06:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2008-08-31 23:59:13 -06:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <cmath>
#include <cstring>
2008-08-31 23:59:13 -06:00
#include <fstream>
#include <iostream>
#include <sstream>
#include "book.h"
#include "evaluate.h"
#include "history.h"
#include "misc.h"
#include "movegen.h"
2008-08-31 23:59:13 -06:00
#include "movepick.h"
#include "lock.h"
2008-08-31 23:59:13 -06:00
#include "san.h"
#include "search.h"
#include "thread.h"
#include "tt.h"
#include "ucioption.h"
using std::cout;
using std::endl;
2008-08-31 23:59:13 -06:00
////
//// Local definitions
////
namespace {
/// Types
// ThreadsManager class is used to handle all the threads related stuff in search,
// init, starting, parking and, the most important, launching a slave thread at a
// split point are what this class does. All the access to shared thread data is
// done through this class, so that we avoid using global variables instead.
class ThreadsManager {
/* As long as the single ThreadsManager object is defined as a global we don't
need to explicitly initialize to zero its data members because variables with
static storage duration are automatically set to zero before enter main()
*/
public:
void init_threads();
void exit_threads();
int active_threads() const { return ActiveThreads; }
void set_active_threads(int newActiveThreads) { ActiveThreads = newActiveThreads; }
void incrementNodeCounter(int threadID) { threads[threadID].nodes++; }
void incrementBetaCounter(Color us, Depth d, int threadID) { threads[threadID].betaCutOffs[us] += unsigned(d); }
void print_current_line(SearchStack ss[], int ply, int threadID);
void resetNodeCounters();
void resetBetaCounters();
int64_t nodes_searched() const;
void get_beta_counters(Color us, int64_t& our, int64_t& their) const;
bool available_thread_exists(int master) const;
bool thread_is_available(int slave, int master) const;
bool thread_should_stop(int threadID) const;
void wake_sleeping_threads();
void put_threads_to_sleep();
void idle_loop(int threadID, SplitPoint* waitSp);
bool split(const Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue,
const Value futilityValue, Depth depth, int* moves, MovePicker* mp, int master, bool pvNode);
private:
friend void poll();
int ActiveThreads;
volatile bool AllThreadsShouldExit, AllThreadsShouldSleep;
Thread threads[MAX_THREADS];
SplitPoint SplitPointStack[MAX_THREADS][ACTIVE_SPLIT_POINTS_MAX];
Lock MPLock, IOLock;
#if !defined(_MSC_VER)
pthread_cond_t WaitCond;
pthread_mutex_t WaitLock;
#else
HANDLE SitIdleEvent[MAX_THREADS];
#endif
};
// RootMove struct is used for moves at the root at the tree. For each
2008-08-31 23:59:13 -06:00
// root move, we store a score, a node count, and a PV (really a refutation
// in the case of moves which fail low).
struct RootMove {
2008-08-31 23:59:13 -06:00
RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; }
// RootMove::operator<() is the comparison function used when
// sorting the moves. A move m1 is considered to be better
// than a move m2 if it has a higher score, or if the moves
// have equal score but m1 has the higher node count.
bool operator<(const RootMove& m) const {
return score != m.score ? score < m.score : theirBeta <= m.theirBeta;
}
2008-08-31 23:59:13 -06:00
Move move;
Value score;
int64_t nodes, cumulativeNodes, ourBeta, theirBeta;
2008-08-31 23:59:13 -06:00
Move pv[PLY_MAX_PLUS_2];
};
// The RootMoveList class is essentially an array of RootMove objects, with
// a handful of methods for accessing the data in the individual moves.
class RootMoveList {
public:
RootMoveList(Position& pos, Move searchMoves[]);
int move_count() const { return count; }
Move get_move(int moveNum) const { return moves[moveNum].move; }
Value get_move_score(int moveNum) const { return moves[moveNum].score; }
void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; }
Move get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; }
int64_t get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; }
void set_move_nodes(int moveNum, int64_t nodes);
void set_beta_counters(int moveNum, int64_t our, int64_t their);
2008-08-31 23:59:13 -06:00
void set_move_pv(int moveNum, const Move pv[]);
void sort();
2008-08-31 23:59:13 -06:00
void sort_multipv(int n);
private:
static const int MaxRootMoves = 500;
RootMove moves[MaxRootMoves];
int count;
};
/// Constants
2008-08-31 23:59:13 -06:00
// Search depth at iteration 1
const Depth InitialDepth = OnePly;
2008-08-31 23:59:13 -06:00
// Use internal iterative deepening?
const bool UseIIDAtPVNodes = true;
const bool UseIIDAtNonPVNodes = true;
2008-08-31 23:59:13 -06:00
// Internal iterative deepening margin. At Non-PV moves, when
// UseIIDAtNonPVNodes is true, we do an internal iterative deepening
// search when the static evaluation is at most IIDMargin below beta.
2008-08-31 23:59:13 -06:00
const Value IIDMargin = Value(0x100);
// Easy move margin. An easy move candidate must be at least this much
2008-08-31 23:59:13 -06:00
// better than the second best move.
const Value EasyMoveMargin = Value(0x200);
// Null move margin. A null move search will not be done if the static
2008-08-31 23:59:13 -06:00
// evaluation of the position is more than NullMoveMargin below beta.
const Value NullMoveMargin = Value(0x200);
2008-08-31 23:59:13 -06:00
// If the TT move is at least SingleReplyMargin better then the
// remaining ones we will extend it.
const Value SingleReplyMargin = Value(0x20);
// Depth limit for razoring
const Depth RazorDepth = 4 * OnePly;
2008-08-31 23:59:13 -06:00
/// Lookup tables initialized at startup
// Reduction lookup tables and their getter functions
int8_t PVReductionMatrix[64][64]; // [depth][moveNumber]
int8_t NonPVReductionMatrix[64][64]; // [depth][moveNumber]
inline Depth pv_reduction(Depth d, int mn) { return (Depth) PVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; }
inline Depth nonpv_reduction(Depth d, int mn) { return (Depth) NonPVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; }
// Futility lookup tables and their getter functions
const Value FutilityMarginQS = Value(0x80);
int32_t FutilityMarginsMatrix[14][64]; // [depth][moveNumber]
int FutilityMoveCountArray[32]; // [depth]
inline Value futility_margin(Depth d, int mn) { return Value(d < 7*OnePly ? FutilityMarginsMatrix[Max(d, 0)][Min(mn, 63)] : 2 * VALUE_INFINITE); }
inline int futility_move_count(Depth d) { return d < 16*OnePly ? FutilityMoveCountArray[d] : 512; }
/// Variables initialized by UCI options
// Depth limit for use of dynamic threat detection
Depth ThreatDepth;
2008-08-31 23:59:13 -06:00
// Last seconds noise filtering (LSN)
const bool UseLSNFiltering = true;
const int LSNTime = 4000; // In milliseconds
const Value LSNValue = value_from_centipawns(200);
bool loseOnTime = false;
// Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes.
Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2];
Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2];
2008-08-31 23:59:13 -06:00
// Iteration counters
2008-08-31 23:59:13 -06:00
int Iteration;
// Scores and number of times the best move changed for each iteration
Value ValueByIteration[PLY_MAX_PLUS_2];
2008-08-31 23:59:13 -06:00
int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
// Search window management
int AspirationDelta;
// MultiPV mode
int MultiPV;
2008-08-31 23:59:13 -06:00
// Time managment variables
int RootMoveNumber;
2008-08-31 23:59:13 -06:00
int SearchStartTime;
int MaxNodes, MaxDepth;
int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime;
bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit;
bool AbortSearch, Quit;
bool AspirationFailLow;
2008-08-31 23:59:13 -06:00
// Show current line?
bool ShowCurrentLine;
2008-08-31 23:59:13 -06:00
// Log file
bool UseLogFile;
2008-08-31 23:59:13 -06:00
std::ofstream LogFile;
// MP related variables
Depth MinimumSplitDepth;
int MaxThreadsPerSplitPoint;
ThreadsManager TM;
2008-08-31 23:59:13 -06:00
// Node counters, used only by thread[0] but try to keep in different
// cache lines (64 bytes each) from the heavy SMP read accessed variables.
int NodesSincePoll;
int NodesBetweenPolls = 30000;
// History table
History H;
2008-08-31 23:59:13 -06:00
/// Functions
Value id_loop(const Position& pos, Move searchMoves[]);
Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta);
Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE);
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
void sp_search(SplitPoint* sp, int threadID);
void sp_search_pv(SplitPoint* sp, int threadID);
void init_node(SearchStack ss[], int ply, int threadID);
2008-08-31 23:59:13 -06:00
void update_pv(SearchStack ss[], int ply);
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply);
bool connected_moves(const Position& pos, Move m1, Move m2);
bool value_is_mate(Value value);
bool move_is_killer(Move m, const SearchStack& ss);
Depth extension(const Position&, Move, bool, bool, bool, bool, bool, bool*);
bool ok_to_do_nullmove(const Position& pos);
bool ok_to_prune(const Position& pos, Move m, Move threat);
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
void update_killers(Move m, SearchStack& ss);
void update_gains(const Position& pos, Move move, Value before, Value after);
2008-08-31 23:59:13 -06:00
int current_search_time();
int nps();
void poll();
void ponderhit();
void wait_for_stop_or_ponderhit();
void init_ss_array(SearchStack ss[]);
2008-08-31 23:59:13 -06:00
#if !defined(_MSC_VER)
void *init_thread(void *threadID);
#else
DWORD WINAPI init_thread(LPVOID threadID);
#endif
2008-08-31 23:59:13 -06:00
}
////
//// Functions
////
/// init_threads(), exit_threads() and nodes_searched() are helpers to
/// give accessibility to some TM methods from outside of current file.
void init_threads() { TM.init_threads(); }
void exit_threads() { TM.exit_threads(); }
int64_t nodes_searched() { return TM.nodes_searched(); }
/// perft() is our utility to verify move generation is bug free. All the legal
/// moves up to given depth are generated and counted and the sum returned.
int perft(Position& pos, Depth depth)
{
Move move;
int sum = 0;
MovePicker mp = MovePicker(pos, MOVE_NONE, depth, H);
// If we are at the last ply we don't need to do and undo
// the moves, just to count them.
if (depth <= OnePly) // Replace with '<' to test also qsearch
{
while (mp.get_next_move()) sum++;
return sum;
}
// Loop through all legal moves
CheckInfo ci(pos);
while ((move = mp.get_next_move()) != MOVE_NONE)
{
StateInfo st;
pos.do_move(move, st, ci, pos.move_is_check(move, ci));
sum += perft(pos, depth - OnePly);
pos.undo_move(move);
}
return sum;
}
/// think() is the external interface to Stockfish's search, and is called when
/// the program receives the UCI 'go' command. It initializes various
/// search-related global variables, and calls root_search(). It returns false
/// when a quit command is received during the search.
2008-08-31 23:59:13 -06:00
bool think(const Position& pos, bool infinite, bool ponder, int side_to_move,
int time[], int increment[], int movesToGo, int maxDepth,
int maxNodes, int maxTime, Move searchMoves[]) {
2008-08-31 23:59:13 -06:00
// Initialize global search variables
StopOnPonderhit = AbortSearch = Quit = false;
AspirationFailLow = false;
NodesSincePoll = 0;
SearchStartTime = get_system_time();
ExactMaxTime = maxTime;
MaxDepth = maxDepth;
MaxNodes = maxNodes;
InfiniteSearch = infinite;
PonderSearch = ponder;
UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch;
// Look for a book move, only during games, not tests
if (UseTimeManagement && get_option_value_bool("OwnBook"))
{
Move bookMove;
if (get_option_value_string("Book File") != OpeningBook.file_name())
OpeningBook.open(get_option_value_string("Book File"));
bookMove = OpeningBook.get_move(pos);
if (bookMove != MOVE_NONE)
{
if (PonderSearch)
wait_for_stop_or_ponderhit();
cout << "bestmove " << bookMove << endl;
return true;
}
2008-08-31 23:59:13 -06:00
}
TM.resetNodeCounters();
2008-08-31 23:59:13 -06:00
if (button_was_pressed("New Game"))
loseOnTime = false; // Reset at the beginning of a new game
// Read UCI option values
2008-08-31 23:59:13 -06:00
TT.set_size(get_option_value_int("Hash"));
if (button_was_pressed("Clear Hash"))
TT.clear();
bool PonderingEnabled = get_option_value_bool("Ponder");
2008-08-31 23:59:13 -06:00
MultiPV = get_option_value_int("MultiPV");
CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)"));
CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)"));
SingleEvasionExtension[1] = Depth(get_option_value_int("Single Evasion Extension (PV nodes)"));
SingleEvasionExtension[0] = Depth(get_option_value_int("Single Evasion Extension (non-PV nodes)"));
PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)"));
PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)"));
PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)"));
PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)"));
PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)"));
PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)"));
MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
2008-08-31 23:59:13 -06:00
Chess960 = get_option_value_bool("UCI_Chess960");
ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine");
UseLogFile = get_option_value_bool("Use Search Log");
if (UseLogFile)
LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app);
2008-08-31 23:59:13 -06:00
MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly;
MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point");
2008-08-31 23:59:13 -06:00
read_weights(pos.side_to_move());
// Set the number of active threads
int newActiveThreads = get_option_value_int("Threads");
if (newActiveThreads != TM.active_threads())
{
TM.set_active_threads(newActiveThreads);
init_eval(TM.active_threads());
// HACK: init_eval() destroys the static castleRightsMask[] array in the
// Position class. The below line repairs the damage.
Position p(pos.to_fen());
assert(pos.is_ok());
2008-08-31 23:59:13 -06:00
}
// Wake up sleeping threads
TM.wake_sleeping_threads();
2008-08-31 23:59:13 -06:00
// Set thinking time
int myTime = time[side_to_move];
int myIncrement = increment[side_to_move];
if (UseTimeManagement)
{
if (!movesToGo) // Sudden death time control
{
if (myIncrement)
{
MaxSearchTime = myTime / 30 + myIncrement;
AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100);
}
else // Blitz game without increment
{
MaxSearchTime = myTime / 30;
AbsoluteMaxSearchTime = myTime / 8;
}
}
else // (x moves) / (y minutes)
{
if (movesToGo == 1)
{
MaxSearchTime = myTime / 2;
AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4);
}
else
{
MaxSearchTime = myTime / Min(movesToGo, 20);
AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3);
}
}
if (PonderingEnabled)
{
MaxSearchTime += MaxSearchTime / 4;
MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime);
}
2008-08-31 23:59:13 -06:00
}
// Set best NodesBetweenPolls interval
if (MaxNodes)
NodesBetweenPolls = Min(MaxNodes, 30000);
else if (myTime && myTime < 1000)
NodesBetweenPolls = 1000;
else if (myTime && myTime < 5000)
NodesBetweenPolls = 5000;
2008-08-31 23:59:13 -06:00
else
NodesBetweenPolls = 30000;
2008-08-31 23:59:13 -06:00
// Write information to search log file
if (UseLogFile)
LogFile << "Searching: " << pos.to_fen() << endl
<< "infinite: " << infinite
<< " ponder: " << ponder
<< " time: " << myTime
<< " increment: " << myIncrement
<< " moves to go: " << movesToGo << endl;
// LSN filtering. Used only for developing purpose. Disabled by default.
if ( UseLSNFiltering
&& loseOnTime)
{
// Step 2. If after last move we decided to lose on time, do it now!
while (SearchStartTime + myTime + 1000 > get_system_time())
/* wait here */;
}
// We're ready to start thinking. Call the iterative deepening loop function
Value v = id_loop(pos, searchMoves);
if (UseLSNFiltering)
{
// Step 1. If this is sudden death game and our position is hopeless,
// decide to lose on time.
if ( !loseOnTime // If we already lost on time, go to step 3.
&& myTime < LSNTime
&& myIncrement == 0
&& movesToGo == 0
&& v < -LSNValue)
{
loseOnTime = true;
}
else if (loseOnTime)
{
// Step 3. Now after stepping over the time limit, reset flag for next match.
loseOnTime = false;
}
}
2008-08-31 23:59:13 -06:00
if (UseLogFile)
LogFile.close();
TM.put_threads_to_sleep();
return !Quit;
2008-08-31 23:59:13 -06:00
}
/// init_search() is called during startup. It initializes various lookup tables
2008-08-31 23:59:13 -06:00
void init_search() {
2008-08-31 23:59:13 -06:00
// Init our reduction lookup tables
for (int i = 1; i < 64; i++) // i == depth (OnePly = 1)
for (int j = 1; j < 64; j++) // j == moveNumber
{
double pvRed = 0.5 + log(double(i)) * log(double(j)) / 6.0;
double nonPVRed = 0.5 + log(double(i)) * log(double(j)) / 3.0;
PVReductionMatrix[i][j] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0);
NonPVReductionMatrix[i][j] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0);
}
2008-08-31 23:59:13 -06:00
// Init futility margins array
for (int i = 0; i < 14; i++) // i == depth (OnePly = 2)
for (int j = 0; j < 64; j++) // j == moveNumber
{
FutilityMarginsMatrix[i][j] = (i < 2 ? 0 : 112 * bitScanReverse32(i * i / 2)) - 8 * j; // FIXME: test using log instead of BSR
}
// Init futility move count array
for (int i = 0; i < 32; i++) // i == depth (OnePly = 2)
FutilityMoveCountArray[i] = 3 + (1 << (3 * i / 8));
}
// SearchStack::init() initializes a search stack. Used at the beginning of a
// new search from the root.
void SearchStack::init(int ply) {
pv[ply] = pv[ply + 1] = MOVE_NONE;
currentMove = threatMove = MOVE_NONE;
reduction = Depth(0);
eval = VALUE_NONE;
}
void SearchStack::initKillers() {
mateKiller = MOVE_NONE;
for (int i = 0; i < KILLER_MAX; i++)
killers[i] = MOVE_NONE;
}
2008-08-31 23:59:13 -06:00
namespace {
// id_loop() is the main iterative deepening loop. It calls root_search
2008-08-31 23:59:13 -06:00
// repeatedly with increasing depth until the allocated thinking time has
// been consumed, the user stops the search, or the maximum search depth is
// reached.
Value id_loop(const Position& pos, Move searchMoves[]) {
2008-08-31 23:59:13 -06:00
Position p(pos);
SearchStack ss[PLY_MAX_PLUS_2];
// searchMoves are verified, copied, scored and sorted
RootMoveList rml(p, searchMoves);
// Handle special case of searching on a mate/stale position
if (rml.move_count() == 0)
{
if (PonderSearch)
wait_for_stop_or_ponderhit();
return pos.is_check()? -VALUE_MATE : VALUE_DRAW;
}
// Print RootMoveList c'tor startup scoring to the standard output,
// so that we print information also for iteration 1.
cout << "info depth " << 1 << "\ninfo depth " << 1
<< " score " << value_to_string(rml.get_move_score(0))
<< " time " << current_search_time()
<< " nodes " << TM.nodes_searched()
<< " nps " << nps()
<< " pv " << rml.get_move(0) << "\n";
2008-08-31 23:59:13 -06:00
// Initialize
TT.new_search();
H.clear();
init_ss_array(ss);
ValueByIteration[1] = rml.get_move_score(0);
2008-08-31 23:59:13 -06:00
Iteration = 1;
// Is one move significantly better than others after initial scoring ?
Move EasyMove = MOVE_NONE;
if ( rml.move_count() == 1
|| rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin)
EasyMove = rml.get_move(0);
2008-08-31 23:59:13 -06:00
// Iterative deepening loop
while (Iteration < PLY_MAX)
{
// Initialize iteration
rml.sort();
Iteration++;
BestMoveChangesByIteration[Iteration] = 0;
if (Iteration <= 5)
ExtraSearchTime = 0;
cout << "info depth " << Iteration << endl;
// Calculate dynamic search window based on previous iterations
Value alpha, beta;
if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN)
{
int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2];
int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3];
AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize
alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE);
beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE);
}
else
{
alpha = - VALUE_INFINITE;
beta = VALUE_INFINITE;
}
// Search to the current depth
Value value = root_search(p, ss, rml, alpha, beta);
// Write PV to transposition table, in case the relevant entries have
// been overwritten during the search.
TT.insert_pv(p, ss[0].pv);
if (AbortSearch)
break; // Value cannot be trusted. Break out immediately!
//Save info about search result
ValueByIteration[Iteration] = value;
// Drop the easy move if it differs from the new best move
if (ss[0].pv[0] != EasyMove)
EasyMove = MOVE_NONE;
if (UseTimeManagement)
{
// Time to stop?
bool stopSearch = false;
// Stop search early if there is only a single legal move,
// we search up to Iteration 6 anyway to get a proper score.
if (Iteration >= 6 && rml.move_count() == 1)
stopSearch = true;
// Stop search early when the last two iterations returned a mate score
if ( Iteration >= 6
&& abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
&& abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
stopSearch = true;
// Stop search early if one move seems to be much better than the rest
int64_t nodes = TM.nodes_searched();
if ( Iteration >= 8
&& EasyMove == ss[0].pv[0]
&& ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100
&& current_search_time() > MaxSearchTime / 16)
||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100
&& current_search_time() > MaxSearchTime / 32)))
stopSearch = true;
// Add some extra time if the best move has changed during the last two iterations
if (Iteration > 5 && Iteration <= 50)
ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2)
+ BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3);
// Stop search if most of MaxSearchTime is consumed at the end of the
// iteration. We probably don't have enough time to search the first
// move at the next iteration anyway.
if (current_search_time() > ((MaxSearchTime + ExtraSearchTime) * 80) / 128)
stopSearch = true;
if (stopSearch)
{
if (!PonderSearch)
break;
else
StopOnPonderhit = true;
}
2008-08-31 23:59:13 -06:00
}
if (MaxDepth && Iteration >= MaxDepth)
break;
2008-08-31 23:59:13 -06:00
}
rml.sort();
// If we are pondering or in infinite search, we shouldn't print the
// best move before we are told to do so.
if (!AbortSearch && (PonderSearch || InfiniteSearch))
wait_for_stop_or_ponderhit();
2008-08-31 23:59:13 -06:00
else
// Print final search statistics
cout << "info nodes " << TM.nodes_searched()
<< " nps " << nps()
<< " time " << current_search_time()
<< " hashfull " << TT.full() << endl;
2008-08-31 23:59:13 -06:00
// Print the best move and the ponder move to the standard output
if (ss[0].pv[0] == MOVE_NONE)
{
ss[0].pv[0] = rml.get_move(0);
ss[0].pv[1] = MOVE_NONE;
}
cout << "bestmove " << ss[0].pv[0];
if (ss[0].pv[1] != MOVE_NONE)
cout << " ponder " << ss[0].pv[1];
cout << endl;
2008-08-31 23:59:13 -06:00
if (UseLogFile)
{
if (dbg_show_mean)
dbg_print_mean(LogFile);
if (dbg_show_hit_rate)
dbg_print_hit_rate(LogFile);
LogFile << "\nNodes: " << TM.nodes_searched()
<< "\nNodes/second: " << nps()
<< "\nBest move: " << move_to_san(p, ss[0].pv[0]);
StateInfo st;
p.do_move(ss[0].pv[0], st);
LogFile << "\nPonder move: " << move_to_san(p, ss[0].pv[1]) << endl;
2008-08-31 23:59:13 -06:00
}
return rml.get_move_score(0);
2008-08-31 23:59:13 -06:00
}
// root_search() is the function which searches the root node. It is
2008-08-31 23:59:13 -06:00
// similar to search_pv except that it uses a different move ordering
// scheme and prints some information to the standard output.
2008-08-31 23:59:13 -06:00
Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta) {
int64_t nodes;
Move move;
StateInfo st;
Depth depth, ext, newDepth;
Value value;
CheckInfo ci(pos);
int researchCount = 0;
bool moveIsCheck, captureOrPromotion, dangerous;
Value alpha = oldAlpha;
bool isCheck = pos.is_check();
// Evaluate the position statically
EvalInfo ei;
ss[0].eval = !isCheck ? evaluate(pos, ei, 0) : VALUE_NONE;
2008-08-31 23:59:13 -06:00
while (1) // Fail low loop
{
// Loop through all the moves in the root move list
for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
{
if (alpha >= beta)
{
// We failed high, invalidate and skip next moves, leave node-counters
// and beta-counters as they are and quickly return, we will try to do
// a research at the next iteration with a bigger aspiration window.
rml.set_move_score(i, -VALUE_INFINITE);
continue;
}
RootMoveNumber = i + 1;
// Save the current node count before the move is searched
nodes = TM.nodes_searched();
// Reset beta cut-off counters
TM.resetBetaCounters();
// Pick the next root move, and print the move and the move number to
// the standard output.
move = ss[0].currentMove = rml.get_move(i);
if (current_search_time() >= 1000)
cout << "info currmove " << move
<< " currmovenumber " << RootMoveNumber << endl;
// Decide search depth for this move
moveIsCheck = pos.move_is_check(move);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
depth = (Iteration - 2) * OnePly + InitialDepth;
ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
newDepth = depth + ext;
value = - VALUE_INFINITE;
while (1) // Fail high loop
{
// Make the move, and search it
pos.do_move(move, st, ci, moveIsCheck);
if (i < MultiPV || value > alpha)
{
// Aspiration window is disabled in multi-pv case
if (MultiPV > 1)
alpha = -VALUE_INFINITE;
value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
}
else
{
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
if ( depth >= 3*OnePly // FIXME was newDepth
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move))
{
ss[0].reduction = pv_reduction(depth, RootMoveNumber - MultiPV + 1);
if (ss[0].reduction)
{
value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0);
doFullDepthSearch = (value > alpha);
}
}
if (doFullDepthSearch)
{
ss[0].reduction = Depth(0);
value = -search(pos, ss, -alpha, newDepth, 1, true, 0);
if (value > alpha)
value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
}
}
pos.undo_move(move);
// Can we exit fail high loop ?
if (AbortSearch || value < beta)
break;
// We are failing high and going to do a research. It's important to update score
// before research in case we run out of time while researching.
rml.set_move_score(i, value);
update_pv(ss, 0);
TT.extract_pv(pos, ss[0].pv, PLY_MAX);
rml.set_move_pv(i, ss[0].pv);
// Print search information to the standard output
cout << "info depth " << Iteration
<< " score " << value_to_string(value)
<< ((value >= beta) ? " lowerbound" :
((value <= alpha)? " upperbound" : ""))
<< " time " << current_search_time()
<< " nodes " << TM.nodes_searched()
<< " nps " << nps()
<< " pv ";
for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
cout << ss[0].pv[j] << " ";
cout << endl;
if (UseLogFile)
{
ValueType type = (value >= beta ? VALUE_TYPE_LOWER
: (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
LogFile << pretty_pv(pos, current_search_time(), Iteration,
TM.nodes_searched(), value, type, ss[0].pv) << endl;
}
// Prepare for a research after a fail high, each time with a wider window
researchCount++;
beta = Min(beta + AspirationDelta * (1 << researchCount), VALUE_INFINITE);
} // End of fail high loop
// Finished searching the move. If AbortSearch is true, the search
// was aborted because the user interrupted the search or because we
// ran out of time. In this case, the return value of the search cannot
// be trusted, and we break out of the loop without updating the best
// move and/or PV.
if (AbortSearch)
break;
// Remember beta-cutoff and searched nodes counts for this move. The
// info is used to sort the root moves at the next iteration.
int64_t our, their;
TM.get_beta_counters(pos.side_to_move(), our, their);
rml.set_beta_counters(i, our, their);
rml.set_move_nodes(i, TM.nodes_searched() - nodes);
assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
if (value <= alpha && i >= MultiPV)
rml.set_move_score(i, -VALUE_INFINITE);
else
{
// PV move or new best move!
// Update PV
rml.set_move_score(i, value);
update_pv(ss, 0);
TT.extract_pv(pos, ss[0].pv, PLY_MAX);
rml.set_move_pv(i, ss[0].pv);
if (MultiPV == 1)
{
// We record how often the best move has been changed in each
// iteration. This information is used for time managment: When
// the best move changes frequently, we allocate some more time.
if (i > 0)
BestMoveChangesByIteration[Iteration]++;
// Print search information to the standard output
cout << "info depth " << Iteration
<< " score " << value_to_string(value)
<< ((value >= beta) ? " lowerbound" :
((value <= alpha)? " upperbound" : ""))
<< " time " << current_search_time()
<< " nodes " << TM.nodes_searched()
<< " nps " << nps()
<< " pv ";
for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
cout << ss[0].pv[j] << " ";
cout << endl;
if (UseLogFile)
{
ValueType type = (value >= beta ? VALUE_TYPE_LOWER
: (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
LogFile << pretty_pv(pos, current_search_time(), Iteration,
TM.nodes_searched(), value, type, ss[0].pv) << endl;
}
if (value > alpha)
alpha = value;
}
else // MultiPV > 1
{
rml.sort_multipv(i);
for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
{
cout << "info multipv " << j + 1
<< " score " << value_to_string(rml.get_move_score(j))
<< " depth " << ((j <= i)? Iteration : Iteration - 1)
<< " time " << current_search_time()
<< " nodes " << TM.nodes_searched()
<< " nps " << nps()
<< " pv ";
for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
cout << rml.get_move_pv(j, k) << " ";
cout << endl;
}
alpha = rml.get_move_score(Min(i, MultiPV-1));
}
} // PV move or new best move
assert(alpha >= oldAlpha);
AspirationFailLow = (alpha == oldAlpha);
if (AspirationFailLow && StopOnPonderhit)
StopOnPonderhit = false;
}
// Can we exit fail low loop ?
if (AbortSearch || alpha > oldAlpha)
break;
// Prepare for a research after a fail low, each time with a wider window
researchCount++;
alpha = Max(alpha - AspirationDelta * (1 << researchCount), -VALUE_INFINITE);
oldAlpha = alpha;
} // Fail low loop
return alpha;
2008-08-31 23:59:13 -06:00
}
// search_pv() is the main search function for PV nodes.
Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta,
2008-08-31 23:59:13 -06:00
Depth depth, int ply, int threadID) {
2008-08-31 23:59:13 -06:00
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta > alpha && beta <= VALUE_INFINITE);
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < TM.active_threads());
2008-08-31 23:59:13 -06:00
Move movesSearched[256];
StateInfo st;
const TTEntry* tte;
Move ttMove, move;
Depth ext, newDepth;
Value oldAlpha, value;
bool isCheck, mateThreat, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
int moveCount = 0;
Value bestValue = value = -VALUE_INFINITE;
if (depth < OnePly)
return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID);
2008-08-31 23:59:13 -06:00
// Initialize, and make an early exit in case of an aborted search,
// an instant draw, maximum ply reached, etc.
init_node(ss, ply, threadID);
2008-08-31 23:59:13 -06:00
// After init_node() that calls poll()
if (AbortSearch || TM.thread_should_stop(threadID))
return Value(0);
if (pos.is_draw() || ply >= PLY_MAX - 1)
return VALUE_DRAW;
2008-08-31 23:59:13 -06:00
// Mate distance pruning
oldAlpha = alpha;
2008-08-31 23:59:13 -06:00
alpha = Max(value_mated_in(ply), alpha);
beta = Min(value_mate_in(ply+1), beta);
if (alpha >= beta)
return alpha;
2008-08-31 23:59:13 -06:00
// Transposition table lookup. At PV nodes, we don't use the TT for
// pruning, but only for move ordering. This is to avoid problems in
// the following areas:
//
// * Repetition draw detection
// * Fifty move rule detection
// * Searching for a mate
// * Printing of full PV line
//
tte = TT.retrieve(pos.get_key());
ttMove = (tte ? tte->move() : MOVE_NONE);
2008-08-31 23:59:13 -06:00
// Go with internal iterative deepening if we don't have a TT move
if ( UseIIDAtPVNodes
&& depth >= 5*OnePly
&& ttMove == MOVE_NONE)
{
search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID);
ttMove = ss[ply].pv[ply];
tte = TT.retrieve(pos.get_key());
2008-08-31 23:59:13 -06:00
}
isCheck = pos.is_check();
if (!isCheck)
{
// Update gain statistics of the previous move that lead
// us in this position.
EvalInfo ei;
ss[ply].eval = evaluate(pos, ei, threadID);
update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
}
2008-08-31 23:59:13 -06:00
// Initialize a MovePicker object for the current position, and prepare
// to search all moves
mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move()));
CheckInfo ci(pos);
MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]);
2008-08-31 23:59:13 -06:00
// Loop through all legal moves until no moves remain or a beta cutoff
// occurs.
while ( alpha < beta
&& (move = mp.get_next_move()) != MOVE_NONE
&& !TM.thread_should_stop(threadID))
{
assert(move_is_ok(move));
singleEvasion = (isCheck && mp.number_of_evasions() == 1);
moveIsCheck = pos.move_is_check(move, ci);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
// Decide the new search depth
ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
// Singular extension search. We extend the TT move if its value is much better than
// its siblings. To verify this we do a reduced search on all the other moves but the
// ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
if ( depth >= 6 * OnePly
&& tte
&& move == tte->move()
&& ext < OnePly
&& is_lower_bound(tte->type())
&& tte->depth() >= depth - 3 * OnePly)
{
Value ttValue = value_from_tt(tte->value(), ply);
if (abs(ttValue) < VALUE_KNOWN_WIN)
{
Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move);
if (excValue < ttValue - SingleReplyMargin)
ext = OnePly;
}
}
newDepth = depth - OnePly + ext;
2008-08-31 23:59:13 -06:00
// Update current move
movesSearched[moveCount++] = ss[ply].currentMove = move;
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
if (moveCount == 1) // The first move in list is the PV
value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
else
{
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
if ( depth >= 3*OnePly
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[ply]))
{
ss[ply].reduction = pv_reduction(depth, moveCount);
if (ss[ply].reduction)
{
value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID);
doFullDepthSearch = (value > alpha);
}
2008-08-31 23:59:13 -06:00
}
if (doFullDepthSearch) // Go with full depth non-pv search
{
ss[ply].reduction = Depth(0);
value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID);
if (value > alpha && value < beta)
value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
2008-08-31 23:59:13 -06:00
}
}
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
// New best move?
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
alpha = value;
update_pv(ss, ply);
if (value == value_mate_in(ply + 1))
ss[ply].mateKiller = move;
}
2008-08-31 23:59:13 -06:00
}
// Split?
if ( TM.active_threads() > 1
&& bestValue < beta
&& depth >= MinimumSplitDepth
&& Iteration <= 99
&& TM.available_thread_exists(threadID)
&& !AbortSearch
&& !TM.thread_should_stop(threadID)
&& TM.split(pos, ss, ply, &alpha, beta, &bestValue, VALUE_NONE,
depth, &moveCount, &mp, threadID, true))
break;
2008-08-31 23:59:13 -06:00
}
// All legal moves have been searched. A special case: If there were
// no legal moves, it must be mate or stalemate.
if (moveCount == 0)
return (isCheck ? value_mated_in(ply) : VALUE_DRAW);
2008-08-31 23:59:13 -06:00
// If the search is not aborted, update the transposition table,
// history counters, and killer moves.
if (AbortSearch || TM.thread_should_stop(threadID))
return bestValue;
if (bestValue <= oldAlpha)
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
else if (bestValue >= beta)
{
TM.incrementBetaCounter(pos.side_to_move(), depth, threadID);
move = ss[ply].pv[ply];
if (!pos.move_is_capture_or_promotion(move))
{
update_history(pos, move, depth, movesSearched, moveCount);
update_killers(move, ss[ply]);
2008-08-31 23:59:13 -06:00
}
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
2008-08-31 23:59:13 -06:00
}
else
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss[ply].pv[ply]);
2008-08-31 23:59:13 -06:00
return bestValue;
}
2008-08-31 23:59:13 -06:00
// search() is the search function for zero-width nodes.
Value search(Position& pos, SearchStack ss[], Value beta, Depth depth,
int ply, bool allowNullmove, int threadID, Move excludedMove) {
2008-08-31 23:59:13 -06:00
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < TM.active_threads());
2008-08-31 23:59:13 -06:00
Move movesSearched[256];
EvalInfo ei;
StateInfo st;
const TTEntry* tte;
Move ttMove, move;
Depth ext, newDepth;
Value bestValue, staticValue, nullValue, value, futilityValue, futilityValueScaled;
bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
bool mateThreat = false;
int moveCount = 0;
futilityValue = staticValue = bestValue = value = -VALUE_INFINITE;
if (depth < OnePly)
return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID);
2008-08-31 23:59:13 -06:00
// Step 1. Initialize node and poll
// Polling can abort search.
init_node(ss, ply, threadID);
// Step 2. Check for aborted search and immediate draw
if (AbortSearch || TM.thread_should_stop(threadID))
return Value(0);
2008-08-31 23:59:13 -06:00
if (pos.is_draw() || ply >= PLY_MAX - 1)
return VALUE_DRAW;
2008-08-31 23:59:13 -06:00
// Step 3. Mate distance pruning
if (value_mated_in(ply) >= beta)
return beta;
if (value_mate_in(ply + 1) < beta)
return beta - 1;
2008-08-31 23:59:13 -06:00
// Step 4. Transposition table lookup
// We don't want the score of a partial search to overwrite a previous full search
// TT value, so we use a different position key in case of an excluded move exsists.
Key posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
tte = TT.retrieve(posKey);
ttMove = (tte ? tte->move() : MOVE_NONE);
if (tte && ok_to_use_TT(tte, depth, beta, ply))
{
ss[ply].currentMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
2008-08-31 23:59:13 -06:00
}
// Step 5. Evaluate the position statically
isCheck = pos.is_check();
if (!isCheck)
{
if (tte && (tte->type() & VALUE_TYPE_EVAL))
staticValue = value_from_tt(tte->value(), ply);
else
staticValue = evaluate(pos, ei, threadID);
ss[ply].eval = staticValue;
futilityValue = staticValue + futility_margin(depth, 0); //FIXME: Remove me, only for split
staticValue = refine_eval(tte, staticValue, ply); // Enhance accuracy with TT value if possible
update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
}
2008-08-31 23:59:13 -06:00
// Static null move pruning. We're betting that the opponent doesn't have
// a move that will reduce the score by more than FutilityMargins[int(depth)]
// if we do a null move.
if ( !isCheck
&& allowNullmove
&& depth < RazorDepth
&& staticValue - futility_margin(depth, 0) >= beta)
return staticValue - futility_margin(depth, 0);
// Null move search
if ( allowNullmove
&& depth > OnePly
&& !isCheck
&& !value_is_mate(beta)
&& ok_to_do_nullmove(pos)
&& staticValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0))
{
ss[ply].currentMove = MOVE_NULL;
pos.do_null_move(st);
// Null move dynamic reduction based on depth
int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0);
// Null move dynamic reduction based on value
if (staticValue - beta > PawnValueMidgame)
R++;
nullValue = -search(pos, ss, -(beta-1), depth-R*OnePly, ply+1, false, threadID);
pos.undo_null_move();
if (nullValue >= beta)
{
if (depth < 6 * OnePly)
return beta;
// Do zugzwang verification search
Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID);
if (v >= beta)
return beta;
} else {
// The null move failed low, which means that we may be faced with
// some kind of threat. If the previous move was reduced, check if
// the move that refuted the null move was somehow connected to the
// move which was reduced. If a connection is found, return a fail
// low score (which will cause the reduced move to fail high in the
// parent node, which will trigger a re-search with full depth).
if (nullValue == value_mated_in(ply + 2))
mateThreat = true;
ss[ply].threatMove = ss[ply + 1].currentMove;
if ( depth < ThreatDepth
&& ss[ply - 1].reduction
&& connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove))
return beta - 1;
}
}
// Null move search not allowed, try razoring
else if ( !value_is_mate(beta)
&& !isCheck
&& depth < RazorDepth
&& staticValue < beta - (NullMoveMargin + 16 * depth)
&& ss[ply - 1].currentMove != MOVE_NULL
&& ttMove == MOVE_NONE
&& !pos.has_pawn_on_7th(pos.side_to_move()))
{
Value rbeta = beta - (NullMoveMargin + 16 * depth);
Value v = qsearch(pos, ss, rbeta-1, rbeta, Depth(0), ply, threadID);
if (v < rbeta)
return v;
2008-08-31 23:59:13 -06:00
}
// Go with internal iterative deepening if we don't have a TT move
if (UseIIDAtNonPVNodes && ttMove == MOVE_NONE && depth >= 8*OnePly &&
!isCheck && ss[ply].eval >= beta - IIDMargin)
{
search(pos, ss, beta, Min(depth/2, depth-2*OnePly), ply, false, threadID);
ttMove = ss[ply].pv[ply];
tte = TT.retrieve(posKey);
2008-08-31 23:59:13 -06:00
}
// Initialize a MovePicker object for the current position, and prepare
// to search all moves.
MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]);
CheckInfo ci(pos);
2008-08-31 23:59:13 -06:00
// Loop through all legal moves until no moves remain or a beta cutoff occurs
while ( bestValue < beta
&& (move = mp.get_next_move()) != MOVE_NONE
&& !TM.thread_should_stop(threadID))
{
assert(move_is_ok(move));
if (move == excludedMove)
continue;
moveIsCheck = pos.move_is_check(move, ci);
singleEvasion = (isCheck && mp.number_of_evasions() == 1);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
2008-08-31 23:59:13 -06:00
// Decide the new search depth
ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
// Singular extension search. We extend the TT move if its value is much better than
// its siblings. To verify this we do a reduced search on all the other moves but the
// ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
if ( depth >= 8 * OnePly
&& tte
&& move == tte->move()
&& !excludedMove // Do not allow recursive single-reply search
&& ext < OnePly
&& is_lower_bound(tte->type())
&& tte->depth() >= depth - 3 * OnePly)
{
Value ttValue = value_from_tt(tte->value(), ply);
if (abs(ttValue) < VALUE_KNOWN_WIN)
{
Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move);
if (excValue < ttValue - SingleReplyMargin)
ext = OnePly;
}
}
newDepth = depth - OnePly + ext;
2008-08-31 23:59:13 -06:00
// Update current move
movesSearched[moveCount++] = ss[ply].currentMove = move;
2008-08-31 23:59:13 -06:00
// Futility pruning
if ( !isCheck
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& move != ttMove)
{
// Move count based pruning
if ( moveCount >= futility_move_count(depth)
&& ok_to_prune(pos, move, ss[ply].threatMove)
&& bestValue > value_mated_in(PLY_MAX))
continue;
2008-08-31 23:59:13 -06:00
// Value based pruning
Depth predictedDepth = newDepth - nonpv_reduction(depth, moveCount); //FIXME: We are ignoring condition: depth >= 3*OnePly, BUG??
futilityValueScaled = ss[ply].eval + futility_margin(predictedDepth, moveCount)
+ H.gain(pos.piece_on(move_from(move)), move_to(move)) + 45;
if (futilityValueScaled < beta)
{
if (futilityValueScaled > bestValue)
bestValue = futilityValueScaled;
continue;
2008-08-31 23:59:13 -06:00
}
}
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
if ( depth >= 3*OnePly
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[ply]))
{
ss[ply].reduction = nonpv_reduction(depth, moveCount);
if (ss[ply].reduction)
{
value = -search(pos, ss, -(beta-1), newDepth-ss[ply].reduction, ply+1, true, threadID);
doFullDepthSearch = (value >= beta);
}
2008-08-31 23:59:13 -06:00
}
if (doFullDepthSearch) // Go with full depth non-pv search
{
ss[ply].reduction = Depth(0);
value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID);
2008-08-31 23:59:13 -06:00
}
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
// New best move?
if (value > bestValue)
{
bestValue = value;
if (value >= beta)
update_pv(ss, ply);
if (value == value_mate_in(ply + 1))
ss[ply].mateKiller = move;
2008-08-31 23:59:13 -06:00
}
// Split?
if ( TM.active_threads() > 1
&& bestValue < beta
&& depth >= MinimumSplitDepth
&& Iteration <= 99
&& TM.available_thread_exists(threadID)
&& !AbortSearch
&& !TM.thread_should_stop(threadID)
&& TM.split(pos, ss, ply, NULL, beta, &bestValue, futilityValue, //FIXME: SMP & futilityValue
depth, &moveCount, &mp, threadID, false))
break;
2008-08-31 23:59:13 -06:00
}
// All legal moves have been searched. A special case: If there were
// no legal moves, it must be mate or stalemate.
if (!moveCount)
return excludedMove ? beta - 1 : (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW);
2008-08-31 23:59:13 -06:00
// If the search is not aborted, update the transposition table,
// history counters, and killer moves.
if (AbortSearch || TM.thread_should_stop(threadID))
return bestValue;
if (bestValue < beta)
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
else
{
TM.incrementBetaCounter(pos.side_to_move(), depth, threadID);
move = ss[ply].pv[ply];
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
if (!pos.move_is_capture_or_promotion(move))
{
update_history(pos, move, depth, movesSearched, moveCount);
update_killers(move, ss[ply]);
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
}
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
return bestValue;
}
2008-08-31 23:59:13 -06:00
// qsearch() is the quiescence search function, which is called by the main
// search function when the remaining depth is zero (or, to be more precise,
// less than OnePly).
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta,
2008-08-31 23:59:13 -06:00
Depth depth, int ply, int threadID) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(depth <= 0);
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < TM.active_threads());
2008-08-31 23:59:13 -06:00
EvalInfo ei;
StateInfo st;
Move ttMove, move;
Value staticValue, bestValue, value, futilityBase, futilityValue;
bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable;
const TTEntry* tte = NULL;
int moveCount = 0;
bool pvNode = (beta - alpha != 1);
Value oldAlpha = alpha;
// Initialize, and make an early exit in case of an aborted search,
2008-08-31 23:59:13 -06:00
// an instant draw, maximum ply reached, etc.
init_node(ss, ply, threadID);
// After init_node() that calls poll()
if (AbortSearch || TM.thread_should_stop(threadID))
return Value(0);
2008-08-31 23:59:13 -06:00
if (pos.is_draw() || ply >= PLY_MAX - 1)
return VALUE_DRAW;
2008-08-31 23:59:13 -06:00
// Transposition table lookup. At PV nodes, we don't use the TT for
// pruning, but only for move ordering.
tte = TT.retrieve(pos.get_key());
ttMove = (tte ? tte->move() : MOVE_NONE);
if (!pvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
{
assert(tte->type() != VALUE_TYPE_EVAL);
ss[ply].currentMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
}
isCheck = pos.is_check();
// Evaluate the position statically
if (isCheck)
staticValue = -VALUE_INFINITE;
else if (tte && (tte->type() & VALUE_TYPE_EVAL))
staticValue = value_from_tt(tte->value(), ply);
else
staticValue = evaluate(pos, ei, threadID);
2008-08-31 23:59:13 -06:00
if (!isCheck)
{
ss[ply].eval = staticValue;
update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval);
}
2008-08-31 23:59:13 -06:00
// Initialize "stand pat score", and return it immediately if it is
// at least beta.
bestValue = staticValue;
if (bestValue >= beta)
{
// Store the score to avoid a future costly evaluation() call
if (!isCheck && !tte && ei.futilityMargin[pos.side_to_move()] == 0)
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE);
return bestValue;
}
if (bestValue > alpha)
2008-08-31 23:59:13 -06:00
alpha = bestValue;
// If we are near beta then try to get a cutoff pushing checks a bit further
bool deepChecks = depth == -OnePly && staticValue >= beta - PawnValueMidgame / 8;
2008-08-31 23:59:13 -06:00
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions and checks (only if depth == 0 or depth == -OnePly
// and we are near beta) will be generated.
MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H);
CheckInfo ci(pos);
enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
futilityBase = staticValue + FutilityMarginQS + ei.futilityMargin[pos.side_to_move()];
2008-08-31 23:59:13 -06:00
// Loop through the moves until no moves remain or a beta cutoff
2008-08-31 23:59:13 -06:00
// occurs.
while ( alpha < beta
&& (move = mp.get_next_move()) != MOVE_NONE)
{
assert(move_is_ok(move));
moveIsCheck = pos.move_is_check(move, ci);
// Update current move
2008-08-31 23:59:13 -06:00
moveCount++;
ss[ply].currentMove = move;
// Futility pruning
if ( enoughMaterial
&& !isCheck
&& !pvNode
&& !moveIsCheck
&& move != ttMove
&& !move_is_promotion(move)
&& !pos.move_is_passed_pawn_push(move))
{
futilityValue = futilityBase
+ pos.endgame_value_of_piece_on(move_to(move))
+ (move_is_ep(move) ? PawnValueEndgame : Value(0));
if (futilityValue < alpha)
{
if (futilityValue > bestValue)
bestValue = futilityValue;
continue;
}
2008-08-31 23:59:13 -06:00
}
// Detect blocking evasions that are candidate to be pruned
evasionPrunable = isCheck
&& bestValue != -VALUE_INFINITE
&& !pos.move_is_capture(move)
&& pos.type_of_piece_on(move_from(move)) != KING
&& !pos.can_castle(pos.side_to_move());
// Don't search moves with negative SEE values
if ( (!isCheck || evasionPrunable)
&& !pvNode
&& move != ttMove
&& !move_is_promotion(move)
&& pos.see_sign(move) < 0)
continue;
2008-08-31 23:59:13 -06:00
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID);
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
alpha = value;
update_pv(ss, ply);
}
}
2008-08-31 23:59:13 -06:00
}
// All legal moves have been searched. A special case: If we're in check
// and no legal moves were found, it is checkmate.
if (!moveCount && pos.is_check()) // Mate!
return value_mated_in(ply);
2008-08-31 23:59:13 -06:00
// Update transposition table
Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1));
if (bestValue <= oldAlpha)
{
// If bestValue isn't changed it means it is still the static evaluation
// of the node, so keep this info to avoid a future evaluation() call.
ValueType type = (bestValue == staticValue && !ei.futilityMargin[pos.side_to_move()] ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE);
}
else if (bestValue >= beta)
{
move = ss[ply].pv[ply];
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move);
// Update killers only for good checking moves
if (!pos.move_is_capture_or_promotion(move))
update_killers(move, ss[ply]);
}
else
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss[ply].pv[ply]);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
return bestValue;
}
// sp_search() is used to search from a split point. This function is called
// by each thread working at the split point. It is similar to the normal
// search() function, but simpler. Because we have already probed the hash
// table, done a null move search, and searched the first move before
// splitting, we don't have to repeat all this work in sp_search(). We
// also don't need to store anything to the hash table here: This is taken
// care of after we return from the split point.
void sp_search(SplitPoint* sp, int threadID) {
assert(threadID >= 0 && threadID < TM.active_threads());
assert(TM.active_threads() > 1);
Position pos(*sp->pos);
CheckInfo ci(pos);
SearchStack* ss = sp->sstack[threadID];
Value value = -VALUE_INFINITE;
2008-08-31 23:59:13 -06:00
Move move;
int moveCount;
2008-08-31 23:59:13 -06:00
bool isCheck = pos.is_check();
bool useFutilityPruning = sp->depth < 7 * OnePly //FIXME: sync with search
&& !isCheck;
while ( lock_grab_bool(&(sp->lock))
&& sp->bestValue < sp->beta
&& !TM.thread_should_stop(threadID)
&& (move = sp->mp->get_next_move()) != MOVE_NONE)
{
moveCount = ++sp->moves;
lock_release(&(sp->lock));
assert(move_is_ok(move));
2008-08-31 23:59:13 -06:00
bool moveIsCheck = pos.move_is_check(move, ci);
bool captureOrPromotion = pos.move_is_capture_or_promotion(move);
2008-08-31 23:59:13 -06:00
ss[sp->ply].currentMove = move;
// Decide the new search depth
bool dangerous;
Depth ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, false, false, &dangerous);
Depth newDepth = sp->depth - OnePly + ext;
2008-08-31 23:59:13 -06:00
// Prune?
if ( useFutilityPruning
&& !dangerous
&& !captureOrPromotion)
{
// Move count based pruning
if ( moveCount >= futility_move_count(sp->depth)
&& ok_to_prune(pos, move, ss[sp->ply].threatMove)
&& sp->bestValue > value_mated_in(PLY_MAX))
continue;
// Value based pruning
Value futilityValueScaled = sp->futilityValue - moveCount * 8; //FIXME: sync with search
if (futilityValueScaled < sp->beta)
{
if (futilityValueScaled > sp->bestValue) // Less then 1% of cases
{
lock_grab(&(sp->lock));
if (futilityValueScaled > sp->bestValue)
sp->bestValue = futilityValueScaled;
lock_release(&(sp->lock));
}
continue;
}
}
2008-08-31 23:59:13 -06:00
// Make and search the move.
StateInfo st;
pos.do_move(move, st, ci, moveIsCheck);
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
if ( !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[sp->ply]))
{
ss[sp->ply].reduction = nonpv_reduction(sp->depth, moveCount);
if (ss[sp->ply].reduction)
{
value = -search(pos, ss, -(sp->beta-1), newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
doFullDepthSearch = (value >= sp->beta && !TM.thread_should_stop(threadID));
}
2008-08-31 23:59:13 -06:00
}
if (doFullDepthSearch) // Go with full depth non-pv search
{
ss[sp->ply].reduction = Depth(0);
value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID);
2008-08-31 23:59:13 -06:00
}
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if (value > sp->bestValue) // Less then 2% of cases
{
lock_grab(&(sp->lock));
if (value > sp->bestValue && !TM.thread_should_stop(threadID))
{
sp->bestValue = value;
if (sp->bestValue >= sp->beta)
{
sp->stopRequest = true;
sp_update_pv(sp->parentSstack, ss, sp->ply);
}
}
lock_release(&(sp->lock));
2008-08-31 23:59:13 -06:00
}
}
/* Here we have the lock still grabbed */
2008-08-31 23:59:13 -06:00
sp->cpus--;
sp->slaves[threadID] = 0;
lock_release(&(sp->lock));
}
// sp_search_pv() is used to search from a PV split point. This function
// is called by each thread working at the split point. It is similar to
// the normal search_pv() function, but simpler. Because we have already
// probed the hash table and searched the first move before splitting, we
// don't have to repeat all this work in sp_search_pv(). We also don't
// need to store anything to the hash table here: This is taken care of
2008-08-31 23:59:13 -06:00
// after we return from the split point.
void sp_search_pv(SplitPoint* sp, int threadID) {
assert(threadID >= 0 && threadID < TM.active_threads());
assert(TM.active_threads() > 1);
Position pos(*sp->pos);
CheckInfo ci(pos);
SearchStack* ss = sp->sstack[threadID];
Value value = -VALUE_INFINITE;
int moveCount;
2008-08-31 23:59:13 -06:00
Move move;
while ( lock_grab_bool(&(sp->lock))
&& sp->alpha < sp->beta
&& !TM.thread_should_stop(threadID)
&& (move = sp->mp->get_next_move()) != MOVE_NONE)
{
moveCount = ++sp->moves;
lock_release(&(sp->lock));
2008-08-31 23:59:13 -06:00
assert(move_is_ok(move));
bool moveIsCheck = pos.move_is_check(move, ci);
bool captureOrPromotion = pos.move_is_capture_or_promotion(move);
2008-08-31 23:59:13 -06:00
ss[sp->ply].currentMove = move;
// Decide the new search depth
bool dangerous;
Depth ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
Depth newDepth = sp->depth - OnePly + ext;
2008-08-31 23:59:13 -06:00
// Make and search the move.
StateInfo st;
pos.do_move(move, st, ci, moveIsCheck);
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
if ( !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[sp->ply]))
{
ss[sp->ply].reduction = pv_reduction(sp->depth, moveCount);
if (ss[sp->ply].reduction)
{
Value localAlpha = sp->alpha;
value = -search(pos, ss, -localAlpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
doFullDepthSearch = (value > localAlpha && !TM.thread_should_stop(threadID));
}
2008-08-31 23:59:13 -06:00
}
if (doFullDepthSearch) // Go with full depth non-pv search
{
Value localAlpha = sp->alpha;
ss[sp->ply].reduction = Depth(0);
value = -search(pos, ss, -localAlpha, newDepth, sp->ply+1, true, threadID);
if (value > localAlpha && value < sp->beta && !TM.thread_should_stop(threadID))
{
// If another thread has failed high then sp->alpha has been increased
// to be higher or equal then beta, if so, avoid to start a PV search.
localAlpha = sp->alpha;
if (localAlpha < sp->beta)
value = -search_pv(pos, ss, -sp->beta, -localAlpha, newDepth, sp->ply+1, threadID);
}
2008-08-31 23:59:13 -06:00
}
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if (value > sp->bestValue) // Less then 2% of cases
{
lock_grab(&(sp->lock));
if (value > sp->bestValue && !TM.thread_should_stop(threadID))
{
sp->bestValue = value;
if (value > sp->alpha)
{
// Ask threads to stop before to modify sp->alpha
if (value >= sp->beta)
sp->stopRequest = true;
sp->alpha = value;
sp_update_pv(sp->parentSstack, ss, sp->ply);
if (value == value_mate_in(sp->ply + 1))
ss[sp->ply].mateKiller = move;
}
}
lock_release(&(sp->lock));
2008-08-31 23:59:13 -06:00
}
}
/* Here we have the lock still grabbed */
2008-08-31 23:59:13 -06:00
sp->cpus--;
sp->slaves[threadID] = 0;
lock_release(&(sp->lock));
}
2008-08-31 23:59:13 -06:00
// init_node() is called at the beginning of all the search functions
// (search(), search_pv(), qsearch(), and so on) and initializes the
// search stack object corresponding to the current node. Once every
2008-08-31 23:59:13 -06:00
// NodesBetweenPolls nodes, init_node() also calls poll(), which polls
// for user input and checks whether it is time to stop the search.
void init_node(SearchStack ss[], int ply, int threadID) {
2008-08-31 23:59:13 -06:00
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < TM.active_threads());
2008-08-31 23:59:13 -06:00
TM.incrementNodeCounter(threadID);
2008-08-31 23:59:13 -06:00
if (threadID == 0)
{
NodesSincePoll++;
if (NodesSincePoll >= NodesBetweenPolls)
{
poll();
NodesSincePoll = 0;
}
2008-08-31 23:59:13 -06:00
}
ss[ply].init(ply);
ss[ply + 2].initKillers();
TM.print_current_line(ss, ply, threadID);
2008-08-31 23:59:13 -06:00
}
// update_pv() is called whenever a search returns a value > alpha.
// It updates the PV in the SearchStack object corresponding to the
// current node.
2008-08-31 23:59:13 -06:00
void update_pv(SearchStack ss[], int ply) {
2008-08-31 23:59:13 -06:00
assert(ply >= 0 && ply < PLY_MAX);
int p;
ss[ply].pv[ply] = ss[ply].currentMove;
for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
ss[ply].pv[p] = ss[ply + 1].pv[p];
2008-08-31 23:59:13 -06:00
ss[ply].pv[p] = MOVE_NONE;
}
// sp_update_pv() is a variant of update_pv for use at split points. The
2008-08-31 23:59:13 -06:00
// difference between the two functions is that sp_update_pv also updates
// the PV at the parent node.
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) {
2008-08-31 23:59:13 -06:00
assert(ply >= 0 && ply < PLY_MAX);
int p;
ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
ss[ply].pv[p] = pss[ply].pv[p] = ss[ply + 1].pv[p];
2008-08-31 23:59:13 -06:00
ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE;
}
// connected_moves() tests whether two moves are 'connected' in the sense
// that the first move somehow made the second move possible (for instance
// if the moving piece is the same in both moves). The first move is assumed
// to be the move that was made to reach the current position, while the
// second move is assumed to be a move from the current position.
2008-08-31 23:59:13 -06:00
bool connected_moves(const Position& pos, Move m1, Move m2) {
2008-08-31 23:59:13 -06:00
Square f1, t1, f2, t2;
Piece p;
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m1));
assert(move_is_ok(m2));
if (m2 == MOVE_NONE)
return false;
2008-08-31 23:59:13 -06:00
// Case 1: The moving piece is the same in both moves
2008-08-31 23:59:13 -06:00
f2 = move_from(m2);
t1 = move_to(m1);
if (f2 == t1)
return true;
2008-08-31 23:59:13 -06:00
// Case 2: The destination square for m2 was vacated by m1
2008-08-31 23:59:13 -06:00
t2 = move_to(m2);
f1 = move_from(m1);
if (t2 == f1)
return true;
2008-08-31 23:59:13 -06:00
// Case 3: Moving through the vacated square
if ( piece_is_slider(pos.piece_on(f2))
&& bit_is_set(squares_between(f2, t2), f1))
2008-08-31 23:59:13 -06:00
return true;
// Case 4: The destination square for m2 is defended by the moving piece in m1
p = pos.piece_on(t1);
if (bit_is_set(pos.attacks_from(p, t1), t2))
return true;
2008-08-31 23:59:13 -06:00
// Case 5: Discovered check, checking piece is the piece moved in m1
if ( piece_is_slider(p)
&& bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
&& !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2))
{
// discovered_check_candidates() works also if the Position's side to
// move is the opposite of the checking piece.
Color them = opposite_color(pos.side_to_move());
Bitboard dcCandidates = pos.discovered_check_candidates(them);
if (bit_is_set(dcCandidates, f2))
return true;
2008-08-31 23:59:13 -06:00
}
return false;
}
// value_is_mate() checks if the given value is a mate one
// eventually compensated for the ply.
bool value_is_mate(Value value) {
assert(abs(value) <= VALUE_INFINITE);
return value <= value_mated_in(PLY_MAX)
|| value >= value_mate_in(PLY_MAX);
}
// move_is_killer() checks if the given move is among the
// killer moves of that ply.
bool move_is_killer(Move m, const SearchStack& ss) {
const Move* k = ss.killers;
for (int i = 0; i < KILLER_MAX; i++, k++)
if (*k == m)
return true;
return false;
}
2008-08-31 23:59:13 -06:00
// extension() decides whether a move should be searched with normal depth,
// or with extended depth. Certain classes of moves (checking moves, in
// particular) are searched with bigger depth than ordinary moves and in
// any case are marked as 'dangerous'. Note that also if a move is not
// extended, as example because the corresponding UCI option is set to zero,
// the move is marked as 'dangerous' so, at least, we avoid to prune it.
2008-08-31 23:59:13 -06:00
Depth extension(const Position& pos, Move m, bool pvNode, bool captureOrPromotion,
bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous) {
assert(m != MOVE_NONE);
2008-08-31 23:59:13 -06:00
Depth result = Depth(0);
*dangerous = moveIsCheck | singleEvasion | mateThreat;
2008-08-31 23:59:13 -06:00
if (*dangerous)
{
if (moveIsCheck)
result += CheckExtension[pvNode];
if (singleEvasion)
result += SingleEvasionExtension[pvNode];
if (mateThreat)
result += MateThreatExtension[pvNode];
}
if (pos.type_of_piece_on(move_from(m)) == PAWN)
{
Color c = pos.side_to_move();
if (relative_rank(c, move_to(m)) == RANK_7)
{
result += PawnPushTo7thExtension[pvNode];
*dangerous = true;
}
if (pos.pawn_is_passed(c, move_to(m)))
{
result += PassedPawnExtension[pvNode];
*dangerous = true;
}
}
if ( captureOrPromotion
&& pos.type_of_piece_on(move_to(m)) != PAWN
&& ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
- pos.midgame_value_of_piece_on(move_to(m)) == Value(0))
&& !move_is_promotion(m)
&& !move_is_ep(m))
{
result += PawnEndgameExtension[pvNode];
*dangerous = true;
}
if ( pvNode
&& captureOrPromotion
&& pos.type_of_piece_on(move_to(m)) != PAWN
&& pos.see_sign(m) >= 0)
{
result += OnePly/2;
*dangerous = true;
}
2008-08-31 23:59:13 -06:00
return Min(result, OnePly);
}
// ok_to_do_nullmove() looks at the current position and decides whether
// doing a 'null move' should be allowed. In order to avoid zugzwang
2008-08-31 23:59:13 -06:00
// problems, null moves are not allowed when the side to move has very
// little material left. Currently, the test is a bit too simple: Null
// moves are avoided only when the side to move has only pawns left.
// It's probably a good idea to avoid null moves in at least some more
2008-08-31 23:59:13 -06:00
// complicated endgames, e.g. KQ vs KR. FIXME
bool ok_to_do_nullmove(const Position& pos) {
return pos.non_pawn_material(pos.side_to_move()) != Value(0);
2008-08-31 23:59:13 -06:00
}
// ok_to_prune() tests whether it is safe to forward prune a move. Only
2008-08-31 23:59:13 -06:00
// non-tactical moves late in the move list close to the leaves are
// candidates for pruning.
bool ok_to_prune(const Position& pos, Move m, Move threat) {
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
assert(threat == MOVE_NONE || move_is_ok(threat));
assert(!pos.move_is_check(m));
assert(!pos.move_is_capture_or_promotion(m));
2008-08-31 23:59:13 -06:00
assert(!pos.move_is_passed_pawn_push(m));
Square mfrom, mto, tfrom, tto;
// Prune if there isn't any threat move
if (threat == MOVE_NONE)
return true;
2008-08-31 23:59:13 -06:00
mfrom = move_from(m);
mto = move_to(m);
tfrom = move_from(threat);
tto = move_to(threat);
// Case 1: Don't prune moves which move the threatened piece
if (mfrom == tto)
return false;
2008-08-31 23:59:13 -06:00
// Case 2: If the threatened piece has value less than or equal to the
2008-08-31 23:59:13 -06:00
// value of the threatening piece, don't prune move which defend it.
if ( pos.move_is_capture(threat)
&& ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
|| pos.type_of_piece_on(tfrom) == KING)
&& pos.move_attacks_square(m, tto))
return false;
2008-08-31 23:59:13 -06:00
// Case 3: If the moving piece in the threatened move is a slider, don't
2008-08-31 23:59:13 -06:00
// prune safe moves which block its ray.
if ( piece_is_slider(pos.piece_on(tfrom))
&& bit_is_set(squares_between(tfrom, tto), mto)
&& pos.see_sign(m) >= 0)
return false;
2008-08-31 23:59:13 -06:00
return true;
}
2008-08-31 23:59:13 -06:00
// ok_to_use_TT() returns true if a transposition table score
// can be used at a given point in search.
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
Value v = value_from_tt(tte->value(), ply);
return ( tte->depth() >= depth
|| v >= Max(value_mate_in(PLY_MAX), beta)
|| v < Min(value_mated_in(PLY_MAX), beta))
&& ( (is_lower_bound(tte->type()) && v >= beta)
|| (is_upper_bound(tte->type()) && v < beta));
}
// refine_eval() returns the transposition table score if
// possible otherwise falls back on static position evaluation.
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) {
if (!tte)
return defaultEval;
Value v = value_from_tt(tte->value(), ply);
if ( (is_lower_bound(tte->type()) && v >= defaultEval)
|| (is_upper_bound(tte->type()) && v < defaultEval))
return v;
return defaultEval;
}
// update_history() registers a good move that produced a beta-cutoff
// in history and marks as failures all the other moves of that ply.
void update_history(const Position& pos, Move move, Depth depth,
Move movesSearched[], int moveCount) {
Move m;
H.success(pos.piece_on(move_from(move)), move_to(move), depth);
for (int i = 0; i < moveCount - 1; i++)
{
m = movesSearched[i];
assert(m != move);
if (!pos.move_is_capture_or_promotion(m))
H.failure(pos.piece_on(move_from(m)), move_to(m), depth);
}
}
// update_killers() add a good move that produced a beta-cutoff
// among the killer moves of that ply.
void update_killers(Move m, SearchStack& ss) {
if (m == ss.killers[0])
return;
for (int i = KILLER_MAX - 1; i > 0; i--)
ss.killers[i] = ss.killers[i - 1];
ss.killers[0] = m;
}
// update_gains() updates the gains table of a non-capture move given
// the static position evaluation before and after the move.
void update_gains(const Position& pos, Move m, Value before, Value after) {
if ( m != MOVE_NULL
&& before != VALUE_NONE
&& after != VALUE_NONE
&& pos.captured_piece() == NO_PIECE_TYPE
&& !move_is_castle(m)
&& !move_is_promotion(m))
H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
}
2008-08-31 23:59:13 -06:00
// current_search_time() returns the number of milliseconds which have passed
// since the beginning of the current search.
int current_search_time() {
2008-08-31 23:59:13 -06:00
return get_system_time() - SearchStartTime;
}
// nps() computes the current nodes/second count.
int nps() {
2008-08-31 23:59:13 -06:00
int t = current_search_time();
return (t > 0 ? int((TM.nodes_searched() * 1000) / t) : 0);
2008-08-31 23:59:13 -06:00
}
// poll() performs two different functions: It polls for user input, and it
2008-08-31 23:59:13 -06:00
// looks at the time consumed so far and decides if it's time to abort the
// search.
void poll() {
static int lastInfoTime;
int t = current_search_time();
2008-08-31 23:59:13 -06:00
// Poll for input
if (Bioskey())
{
// We are line oriented, don't read single chars
std::string command;
if (!std::getline(std::cin, command))
command = "quit";
if (command == "quit")
{
AbortSearch = true;
PonderSearch = false;
Quit = true;
return;
}
else if (command == "stop")
{
AbortSearch = true;
PonderSearch = false;
}
else if (command == "ponderhit")
ponderhit();
2008-08-31 23:59:13 -06:00
}
// Print search information
if (t < 1000)
lastInfoTime = 0;
else if (lastInfoTime > t)
// HACK: Must be a new search where we searched less than
// NodesBetweenPolls nodes during the first second of search.
lastInfoTime = 0;
2008-08-31 23:59:13 -06:00
else if (t - lastInfoTime >= 1000)
{
lastInfoTime = t;
lock_grab(&TM.IOLock);
if (dbg_show_mean)
dbg_print_mean();
if (dbg_show_hit_rate)
dbg_print_hit_rate();
cout << "info nodes " << TM.nodes_searched() << " nps " << nps()
<< " time " << t << " hashfull " << TT.full() << endl;
lock_release(&TM.IOLock);
if (ShowCurrentLine)
TM.threads[0].printCurrentLineRequest = true;
}
2008-08-31 23:59:13 -06:00
// Should we stop the search?
if (PonderSearch)
return;
bool stillAtFirstMove = RootMoveNumber == 1
&& !AspirationFailLow
&& t > MaxSearchTime + ExtraSearchTime;
bool noMoreTime = t > AbsoluteMaxSearchTime
|| stillAtFirstMove;
if ( (Iteration >= 3 && UseTimeManagement && noMoreTime)
|| (ExactMaxTime && t >= ExactMaxTime)
|| (Iteration >= 3 && MaxNodes && TM.nodes_searched() >= MaxNodes))
AbortSearch = true;
2008-08-31 23:59:13 -06:00
}
// ponderhit() is called when the program is pondering (i.e. thinking while
// it's the opponent's turn to move) in order to let the engine know that
// it correctly predicted the opponent's move.
void ponderhit() {
2008-08-31 23:59:13 -06:00
int t = current_search_time();
PonderSearch = false;
bool stillAtFirstMove = RootMoveNumber == 1
&& !AspirationFailLow
&& t > MaxSearchTime + ExtraSearchTime;
bool noMoreTime = t > AbsoluteMaxSearchTime
|| stillAtFirstMove;
if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit))
AbortSearch = true;
2008-08-31 23:59:13 -06:00
}
// init_ss_array() does a fast reset of the first entries of a SearchStack array
void init_ss_array(SearchStack ss[]) {
for (int i = 0; i < 3; i++)
{
ss[i].init(i);
ss[i].initKillers();
}
}
2008-08-31 23:59:13 -06:00
// wait_for_stop_or_ponderhit() is called when the maximum depth is reached
// while the program is pondering. The point is to work around a wrinkle in
// the UCI protocol: When pondering, the engine is not allowed to give a
2008-08-31 23:59:13 -06:00
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
// We simply wait here until one of these commands is sent, and return,
// after which the bestmove and pondermove will be printed (in id_loop()).
2008-08-31 23:59:13 -06:00
void wait_for_stop_or_ponderhit() {
2008-08-31 23:59:13 -06:00
std::string command;
while (true)
{
if (!std::getline(std::cin, command))
command = "quit";
if (command == "quit")
{
Quit = true;
break;
}
else if (command == "ponderhit" || command == "stop")
break;
2008-08-31 23:59:13 -06:00
}
}
// init_thread() is the function which is called when a new thread is
// launched. It simply calls the idle_loop() function with the supplied
// threadID. There are two versions of this function; one for POSIX
// threads and one for Windows threads.
#if !defined(_MSC_VER)
void* init_thread(void *threadID) {
TM.idle_loop(*(int*)threadID, NULL);
return NULL;
}
#else
DWORD WINAPI init_thread(LPVOID threadID) {
TM.idle_loop(*(int*)threadID, NULL);
return NULL;
}
#endif
/// The ThreadsManager class
// resetNodeCounters(), resetBetaCounters(), searched_nodes() and
// get_beta_counters() are getters/setters for the per thread
// counters used to sort the moves at root.
void ThreadsManager::resetNodeCounters() {
for (int i = 0; i < MAX_THREADS; i++)
threads[i].nodes = 0ULL;
}
void ThreadsManager::resetBetaCounters() {
for (int i = 0; i < MAX_THREADS; i++)
threads[i].betaCutOffs[WHITE] = threads[i].betaCutOffs[BLACK] = 0ULL;
}
int64_t ThreadsManager::nodes_searched() const {
int64_t result = 0ULL;
for (int i = 0; i < ActiveThreads; i++)
result += threads[i].nodes;
return result;
}
void ThreadsManager::get_beta_counters(Color us, int64_t& our, int64_t& their) const {
our = their = 0UL;
for (int i = 0; i < MAX_THREADS; i++)
{
our += threads[i].betaCutOffs[us];
their += threads[i].betaCutOffs[opposite_color(us)];
}
}
2008-08-31 23:59:13 -06:00
// idle_loop() is where the threads are parked when they have no work to do.
// The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint
// object for which the current thread is the master.
void ThreadsManager::idle_loop(int threadID, SplitPoint* waitSp) {
assert(threadID >= 0 && threadID < MAX_THREADS);
2008-08-31 23:59:13 -06:00
while (true)
{
// Slave threads can exit as soon as AllThreadsShouldExit raises,
// master should exit as last one.
if (AllThreadsShouldExit)
{
assert(!waitSp);
threads[threadID].state = THREAD_TERMINATED;
return;
}
// If we are not thinking, wait for a condition to be signaled
// instead of wasting CPU time polling for work.
while (AllThreadsShouldSleep || threadID >= ActiveThreads)
{
assert(!waitSp);
assert(threadID != 0);
threads[threadID].state = THREAD_SLEEPING;
2008-08-31 23:59:13 -06:00
#if !defined(_MSC_VER)
pthread_mutex_lock(&WaitLock);
if (AllThreadsShouldSleep || threadID >= ActiveThreads)
pthread_cond_wait(&WaitCond, &WaitLock);
pthread_mutex_unlock(&WaitLock);
2008-08-31 23:59:13 -06:00
#else
WaitForSingleObject(SitIdleEvent[threadID], INFINITE);
2008-08-31 23:59:13 -06:00
#endif
}
2008-08-31 23:59:13 -06:00
// If thread has just woken up, mark it as available
if (threads[threadID].state == THREAD_SLEEPING)
threads[threadID].state = THREAD_AVAILABLE;
// If this thread has been assigned work, launch a search
if (threads[threadID].state == THREAD_WORKISWAITING)
{
assert(!AllThreadsShouldExit && !AllThreadsShouldSleep);
threads[threadID].state = THREAD_SEARCHING;
if (threads[threadID].splitPoint->pvNode)
sp_search_pv(threads[threadID].splitPoint, threadID);
else
sp_search(threads[threadID].splitPoint, threadID);
assert(threads[threadID].state == THREAD_SEARCHING);
threads[threadID].state = THREAD_AVAILABLE;
}
2008-08-31 23:59:13 -06:00
// If this thread is the master of a split point and all threads have
// finished their work at this split point, return from the idle loop.
if (waitSp != NULL && waitSp->cpus == 0)
{
assert(threads[threadID].state == THREAD_AVAILABLE);
threads[threadID].state = THREAD_SEARCHING;
return;
}
2008-08-31 23:59:13 -06:00
}
}
// init_threads() is called during startup. It launches all helper threads,
// and initializes the split point stack and the global locks and condition
// objects.
2008-08-31 23:59:13 -06:00
void ThreadsManager::init_threads() {
volatile int i;
bool ok;
#if !defined(_MSC_VER)
pthread_t pthread[1];
#endif
// Initialize global locks
lock_init(&MPLock, NULL);
lock_init(&IOLock, NULL);
// Initialize SplitPointStack locks
for (i = 0; i < MAX_THREADS; i++)
for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
{
SplitPointStack[i][j].parent = NULL;
lock_init(&(SplitPointStack[i][j].lock), NULL);
}
#if !defined(_MSC_VER)
pthread_mutex_init(&WaitLock, NULL);
pthread_cond_init(&WaitCond, NULL);
#else
for (i = 0; i < MAX_THREADS; i++)
SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0);
#endif
// Will be set just before program exits to properly end the threads
AllThreadsShouldExit = false;
// Threads will be put to sleep as soon as created
AllThreadsShouldSleep = true;
// All threads except the main thread should be initialized to THREAD_AVAILABLE
ActiveThreads = 1;
threads[0].state = THREAD_SEARCHING;
for (i = 1; i < MAX_THREADS; i++)
threads[i].state = THREAD_AVAILABLE;
// Launch the helper threads
for (i = 1; i < MAX_THREADS; i++)
{
#if !defined(_MSC_VER)
ok = (pthread_create(pthread, NULL, init_thread, (void*)(&i)) == 0);
#else
DWORD iID[1];
ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID) != NULL);
#endif
if (!ok)
{
cout << "Failed to create thread number " << i << endl;
Application::exit_with_failure();
}
// Wait until the thread has finished launching and is gone to sleep
while (threads[i].state != THREAD_SLEEPING);
}
2008-08-31 23:59:13 -06:00
}
// exit_threads() is called when the program exits. It makes all the
// helper threads exit cleanly.
void ThreadsManager::exit_threads() {
2008-08-31 23:59:13 -06:00
ActiveThreads = MAX_THREADS; // HACK
AllThreadsShouldSleep = true; // HACK
wake_sleeping_threads();
// This makes the threads to exit idle_loop()
AllThreadsShouldExit = true;
// Wait for thread termination
for (int i = 1; i < MAX_THREADS; i++)
while (threads[i].state != THREAD_TERMINATED);
// Now we can safely destroy the locks
for (int i = 0; i < MAX_THREADS; i++)
for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
lock_destroy(&(SplitPointStack[i][j].lock));
}
2008-08-31 23:59:13 -06:00
// thread_should_stop() checks whether the thread should stop its search.
// This can happen if a beta cutoff has occurred in the thread's currently
// active split point, or in some ancestor of the current split point.
2008-08-31 23:59:13 -06:00
bool ThreadsManager::thread_should_stop(int threadID) const {
2008-08-31 23:59:13 -06:00
assert(threadID >= 0 && threadID < ActiveThreads);
SplitPoint* sp;
2008-08-31 23:59:13 -06:00
for (sp = threads[threadID].splitPoint; sp && !sp->stopRequest; sp = sp->parent);
return sp != NULL;
}
2008-08-31 23:59:13 -06:00
// thread_is_available() checks whether the thread with threadID "slave" is
// available to help the thread with threadID "master" at a split point. An
// obvious requirement is that "slave" must be idle. With more than two
2008-08-31 23:59:13 -06:00
// threads, this is not by itself sufficient: If "slave" is the master of
// some active split point, it is only available as a slave to the other
// threads which are busy searching the split point at the top of "slave"'s
// split point stack (the "helpful master concept" in YBWC terminology).
bool ThreadsManager::thread_is_available(int slave, int master) const {
2008-08-31 23:59:13 -06:00
assert(slave >= 0 && slave < ActiveThreads);
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
if (threads[slave].state != THREAD_AVAILABLE || slave == master)
return false;
2008-08-31 23:59:13 -06:00
// Make a local copy to be sure doesn't change under our feet
int localActiveSplitPoints = threads[slave].activeSplitPoints;
if (localActiveSplitPoints == 0)
// No active split points means that the thread is available as
// a slave for any other thread.
return true;
2008-08-31 23:59:13 -06:00
if (ActiveThreads == 2)
return true;
2008-08-31 23:59:13 -06:00
// Apply the "helpful master" concept if possible. Use localActiveSplitPoints
// that is known to be > 0, instead of threads[slave].activeSplitPoints that
// could have been set to 0 by another thread leading to an out of bound access.
if (SplitPointStack[slave][localActiveSplitPoints - 1].slaves[master])
return true;
2008-08-31 23:59:13 -06:00
return false;
}
// available_thread_exists() tries to find an idle thread which is available as
2008-08-31 23:59:13 -06:00
// a slave for the thread with threadID "master".
bool ThreadsManager::available_thread_exists(int master) const {
2008-08-31 23:59:13 -06:00
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
for (int i = 0; i < ActiveThreads; i++)
if (thread_is_available(i, master))
return true;
2008-08-31 23:59:13 -06:00
return false;
}
// split() does the actual work of distributing the work at a node between
// several threads at PV nodes. If it does not succeed in splitting the
2008-08-31 23:59:13 -06:00
// node (because no idle threads are available, or because we have no unused
// split point objects), the function immediately returns false. If
2008-08-31 23:59:13 -06:00
// splitting is possible, a SplitPoint object is initialized with all the
// data that must be copied to the helper threads (the current position and
// search stack, alpha, beta, the search depth, etc.), and we tell our
// helper threads that they have been assigned work. This will cause them
// to instantly leave their idle loops and call sp_search_pv(). When all
2008-08-31 23:59:13 -06:00
// threads have returned from sp_search_pv (or, equivalently, when
// splitPoint->cpus becomes 0), split() returns true.
bool ThreadsManager::split(const Position& p, SearchStack* sstck, int ply,
Value* alpha, const Value beta, Value* bestValue, const Value futilityValue,
Depth depth, int* moves, MovePicker* mp, int master, bool pvNode) {
2008-08-31 23:59:13 -06:00
assert(p.is_ok());
assert(sstck != NULL);
assert(ply >= 0 && ply < PLY_MAX);
assert(*bestValue >= -VALUE_INFINITE);
assert( ( pvNode && *bestValue <= *alpha)
|| (!pvNode && *bestValue < beta ));
assert(!pvNode || *alpha < beta);
assert(beta <= VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
assert(depth > Depth(0));
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
SplitPoint* splitPoint;
2008-08-31 23:59:13 -06:00
lock_grab(&MPLock);
// If no other thread is available to help us, or if we have too many
// active split points, don't split.
if ( !available_thread_exists(master)
|| threads[master].activeSplitPoints >= ACTIVE_SPLIT_POINTS_MAX)
{
lock_release(&MPLock);
return false;
2008-08-31 23:59:13 -06:00
}
// Pick the next available split point object from the split point stack
splitPoint = &SplitPointStack[master][threads[master].activeSplitPoints];
2008-08-31 23:59:13 -06:00
// Initialize the split point object
splitPoint->parent = threads[master].splitPoint;
splitPoint->stopRequest = false;
2008-08-31 23:59:13 -06:00
splitPoint->ply = ply;
splitPoint->depth = depth;
splitPoint->alpha = pvNode ? *alpha : beta - 1;
splitPoint->beta = beta;
2008-08-31 23:59:13 -06:00
splitPoint->pvNode = pvNode;
splitPoint->bestValue = *bestValue;
splitPoint->futilityValue = futilityValue;
2008-08-31 23:59:13 -06:00
splitPoint->master = master;
splitPoint->mp = mp;
splitPoint->moves = *moves;
splitPoint->cpus = 1;
splitPoint->pos = &p;
2008-08-31 23:59:13 -06:00
splitPoint->parentSstack = sstck;
for (int i = 0; i < ActiveThreads; i++)
splitPoint->slaves[i] = 0;
2008-08-31 23:59:13 -06:00
threads[master].splitPoint = splitPoint;
threads[master].activeSplitPoints++;
2008-08-31 23:59:13 -06:00
// If we are here it means we are not available
assert(threads[master].state != THREAD_AVAILABLE);
// Allocate available threads setting state to THREAD_BOOKED
for (int i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++)
if (thread_is_available(i, master))
{
threads[i].state = THREAD_BOOKED;
threads[i].splitPoint = splitPoint;
splitPoint->slaves[i] = 1;
splitPoint->cpus++;
}
2008-08-31 23:59:13 -06:00
assert(splitPoint->cpus > 1);
// We can release the lock because slave threads are already booked and master is not available
lock_release(&MPLock);
// Tell the threads that they have work to do. This will make them leave
// their idle loop. But before copy search stack tail for each thread.
for (int i = 0; i < ActiveThreads; i++)
if (i == master || splitPoint->slaves[i])
{
memcpy(splitPoint->sstack[i] + ply - 1, sstck + ply - 1, 4 * sizeof(SearchStack));
assert(i == master || threads[i].state == THREAD_BOOKED);
threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
}
2008-08-31 23:59:13 -06:00
// Everything is set up. The master thread enters the idle loop, from
// which it will instantly launch a search, because its state is
// THREAD_WORKISWAITING. We send the split point as a second parameter to the
2008-08-31 23:59:13 -06:00
// idle loop, which means that the main thread will return from the idle
// loop when all threads have finished their work at this split point
// (i.e. when splitPoint->cpus == 0).
2008-08-31 23:59:13 -06:00
idle_loop(master, splitPoint);
// We have returned from the idle loop, which means that all threads are
// finished. Update alpha, beta and bestValue, and return.
2008-08-31 23:59:13 -06:00
lock_grab(&MPLock);
if (pvNode)
*alpha = splitPoint->alpha;
2008-08-31 23:59:13 -06:00
*bestValue = splitPoint->bestValue;
threads[master].activeSplitPoints--;
threads[master].splitPoint = splitPoint->parent;
2008-08-31 23:59:13 -06:00
lock_release(&MPLock);
2008-08-31 23:59:13 -06:00
return true;
}
// wake_sleeping_threads() wakes up all sleeping threads when it is time
// to start a new search from the root.
void ThreadsManager::wake_sleeping_threads() {
assert(AllThreadsShouldSleep);
assert(ActiveThreads > 0);
AllThreadsShouldSleep = false;
if (ActiveThreads == 1)
return;
for (int i = 1; i < ActiveThreads; i++)
assert(threads[i].state == THREAD_SLEEPING);
2008-08-31 23:59:13 -06:00
#if !defined(_MSC_VER)
pthread_mutex_lock(&WaitLock);
pthread_cond_broadcast(&WaitCond);
pthread_mutex_unlock(&WaitLock);
2008-08-31 23:59:13 -06:00
#else
for (int i = 1; i < MAX_THREADS; i++)
SetEvent(SitIdleEvent[i]);
2008-08-31 23:59:13 -06:00
#endif
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
// put_threads_to_sleep() makes all the threads go to sleep just before
// to leave think(), at the end of the search. Threads should have already
// finished the job and should be idle.
void ThreadsManager::put_threads_to_sleep() {
assert(!AllThreadsShouldSleep);
// This makes the threads to go to sleep
AllThreadsShouldSleep = true;
// Reset flags to a known state.
for (int i = 1; i < ActiveThreads; i++)
{
// This flag can be in a random state
threads[i].printCurrentLineRequest = false;
}
}
// print_current_line() prints _once_ the current line of search for a
// given thread and then setup the print request for the next thread.
// Called when the UCI option UCI_ShowCurrLine is 'true'.
void ThreadsManager::print_current_line(SearchStack ss[], int ply, int threadID) {
2008-08-31 23:59:13 -06:00
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
if (!threads[threadID].printCurrentLineRequest)
return;
// One shot only
threads[threadID].printCurrentLineRequest = false;
if (threads[threadID].state == THREAD_SEARCHING)
{
lock_grab(&IOLock);
cout << "info currline " << (threadID + 1);
for (int p = 0; p < ply; p++)
cout << " " << ss[p].currentMove;
cout << endl;
lock_release(&IOLock);
}
// Setup print request for the next thread ID
if (threadID + 1 < ActiveThreads)
threads[threadID + 1].printCurrentLineRequest = true;
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
/// The RootMoveList class
// RootMoveList c'tor
RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) {
SearchStack ss[PLY_MAX_PLUS_2];
MoveStack mlist[MaxRootMoves];
StateInfo st;
bool includeAllMoves = (searchMoves[0] == MOVE_NONE);
// Generate all legal moves
MoveStack* last = generate_moves(pos, mlist);
// Add each move to the moves[] array
for (MoveStack* cur = mlist; cur != last; cur++)
{
bool includeMove = includeAllMoves;
for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++)
includeMove = (searchMoves[k] == cur->move);
if (!includeMove)
continue;
// Find a quick score for the move
init_ss_array(ss);
pos.do_move(cur->move, st);
moves[count].move = cur->move;
moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0);
moves[count].pv[0] = cur->move;
moves[count].pv[1] = MOVE_NONE;
pos.undo_move(cur->move);
count++;
}
sort();
2008-08-31 23:59:13 -06:00
}
// RootMoveList simple methods definitions
void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) {
moves[moveNum].nodes = nodes;
moves[moveNum].cumulativeNodes += nodes;
}
void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) {
moves[moveNum].ourBeta = our;
moves[moveNum].theirBeta = their;
}
void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
int j;
for (j = 0; pv[j] != MOVE_NONE; j++)
moves[moveNum].pv[j] = pv[j];
moves[moveNum].pv[j] = MOVE_NONE;
}
// RootMoveList::sort() sorts the root move list at the beginning of a new
// iteration.
void RootMoveList::sort() {
sort_multipv(count - 1); // Sort all items
}
// RootMoveList::sort_multipv() sorts the first few moves in the root move
// list by their scores and depths. It is used to order the different PVs
// correctly in MultiPV mode.
void RootMoveList::sort_multipv(int n) {
int i,j;
for (i = 1; i <= n; i++)
{
RootMove rm = moves[i];
for (j = i; j > 0 && moves[j - 1] < rm; j--)
moves[j] = moves[j - 1];
moves[j] = rm;
}
}
} // namspace