1
0
Fork 0
stockfish/src/material.cpp

409 lines
14 KiB
C++
Raw Normal View History

2008-08-31 23:59:13 -06:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
2008-08-31 23:59:13 -06:00
Stockfish is free software: you can redistribute it and/or modify
2008-08-31 23:59:13 -06:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
2008-08-31 23:59:13 -06:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2008-08-31 23:59:13 -06:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <cstring>
#include <map>
2008-08-31 23:59:13 -06:00
#include "material.h"
using namespace std;
2008-08-31 23:59:13 -06:00
namespace {
// Values modified by Joona Kiiski
const Value MidgameLimit = Value(15581);
const Value EndgameLimit = Value(3998);
// Polynomial material balance parameters
const Value RedundantQueenPenalty = Value(320);
const Value RedundantRookPenalty = Value(554);
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
const int QuadraticCoefficientsSameColor[][8] = {
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
{ 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } };
const int QuadraticCoefficientsOppositeColor[][8] = {
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
typedef EndgameEvaluationFunctionBase EF;
typedef EndgameScalingFunctionBase SF;
typedef map<Key, EF*> EFMap;
typedef map<Key, SF*> SFMap;
// Endgame evaluation and scaling functions accessed direcly and not through
// the function maps because correspond to more then one material hash key.
EvaluationFunction<KmmKm> EvaluateKmmKm[] = { EvaluationFunction<KmmKm>(WHITE), EvaluationFunction<KmmKm>(BLACK) };
EvaluationFunction<KXK> EvaluateKXK[] = { EvaluationFunction<KXK>(WHITE), EvaluationFunction<KXK>(BLACK) };
ScalingFunction<KBPsK> ScaleKBPsK[] = { ScalingFunction<KBPsK>(WHITE), ScalingFunction<KBPsK>(BLACK) };
ScalingFunction<KQKRPs> ScaleKQKRPs[] = { ScalingFunction<KQKRPs>(WHITE), ScalingFunction<KQKRPs>(BLACK) };
ScalingFunction<KPsK> ScaleKPsK[] = { ScalingFunction<KPsK>(WHITE), ScalingFunction<KPsK>(BLACK) };
ScalingFunction<KPKP> ScaleKPKP[] = { ScalingFunction<KPKP>(WHITE), ScalingFunction<KPKP>(BLACK) };
// Helper templates used to detect a given material distribution
template<Color Us> bool is_KXK(const Position& pos) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
return pos.non_pawn_material(Them) == VALUE_ZERO
&& pos.piece_count(Them, PAWN) == 0
&& pos.non_pawn_material(Us) >= RookValueMidgame;
}
template<Color Us> bool is_KBPsKs(const Position& pos) {
return pos.non_pawn_material(Us) == BishopValueMidgame
&& pos.piece_count(Us, BISHOP) == 1
&& pos.piece_count(Us, PAWN) >= 1;
}
template<Color Us> bool is_KQKRPs(const Position& pos) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
return pos.piece_count(Us, PAWN) == 0
&& pos.non_pawn_material(Us) == QueenValueMidgame
&& pos.piece_count(Us, QUEEN) == 1
&& pos.piece_count(Them, ROOK) == 1
&& pos.piece_count(Them, PAWN) >= 1;
}
}
/// EndgameFunctions class stores endgame evaluation and scaling functions
/// in two std::map. Because STL library is not guaranteed to be thread
/// safe even for read access, the maps, although with identical content,
/// are replicated for each thread. This is faster then using locks.
class EndgameFunctions {
public:
EndgameFunctions();
~EndgameFunctions();
template<class T> T* get(Key key) const;
private:
template<class T> void add(const string& keyCode);
static Key buildKey(const string& keyCode);
static const string swapColors(const string& keyCode);
// Here we store two maps, for evaluate and scaling functions...
pair<EFMap, SFMap> maps;
// ...and here is the accessing template function
template<typename T> const map<Key, T*>& get() const;
};
2008-08-31 23:59:13 -06:00
// Explicit specializations of a member function shall be declared in
// the namespace of which the class template is a member.
template<> const EFMap& EndgameFunctions::get<EF>() const { return maps.first; }
template<> const SFMap& EndgameFunctions::get<SF>() const { return maps.second; }
2008-08-31 23:59:13 -06:00
/// MaterialInfoTable c'tor and d'tor allocate and free the space for EndgameFunctions
2008-08-31 23:59:13 -06:00
MaterialInfoTable::MaterialInfoTable() { funcs = new EndgameFunctions(); }
MaterialInfoTable::~MaterialInfoTable() { delete funcs; }
2008-08-31 23:59:13 -06:00
2008-08-31 23:59:13 -06:00
/// MaterialInfoTable::get_material_info() takes a position object as input,
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
/// If the material configuration is not already present in the table, it
/// is stored there, so we don't have to recompute everything when the
2008-08-31 23:59:13 -06:00
/// same material configuration occurs again.
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
2008-08-31 23:59:13 -06:00
Key key = pos.get_material_key();
MaterialInfo* mi = find(key);
2008-08-31 23:59:13 -06:00
// If mi->key matches the position's material hash key, it means that we
2008-08-31 23:59:13 -06:00
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (mi->key == key)
return mi;
2008-08-31 23:59:13 -06:00
// Initialize MaterialInfo entry
memset(mi, 0, sizeof(MaterialInfo));
2008-08-31 23:59:13 -06:00
mi->key = key;
mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
2008-08-31 23:59:13 -06:00
// Store game phase
mi->gamePhase = MaterialInfoTable::game_phase(pos);
2008-08-31 23:59:13 -06:00
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
// configuration one, then a generic one if previous search failed.
if ((mi->evaluationFunction = funcs->get<EF>(key)) != NULL)
return mi;
if (is_KXK<WHITE>(pos))
{
mi->evaluationFunction = &EvaluateKXK[WHITE];
return mi;
2008-08-31 23:59:13 -06:00
}
if (is_KXK<BLACK>(pos))
{
mi->evaluationFunction = &EvaluateKXK[BLACK];
return mi;
}
if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN))
{
// Minor piece endgame with at least one minor piece per side and
// no pawns. Note that the case KmmK is already handled by KXK.
assert((pos.pieces(KNIGHT, WHITE) | pos.pieces(BISHOP, WHITE)));
assert((pos.pieces(KNIGHT, BLACK) | pos.pieces(BISHOP, BLACK)));
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
{
mi->evaluationFunction = &EvaluateKmmKm[WHITE];
return mi;
}
}
2008-08-31 23:59:13 -06:00
// OK, we didn't find any special evaluation function for the current
// material configuration. Is there a suitable scaling function?
2008-08-31 23:59:13 -06:00
//
// We face problems when there are several conflicting applicable
// scaling functions and we need to decide which one to use.
SF* sf;
if ((sf = funcs->get<SF>(key)) != NULL)
{
mi->scalingFunction[sf->color()] = sf;
return mi;
2008-08-31 23:59:13 -06:00
}
// Generic scaling functions that refer to more then one material
// distribution. Should be probed after the specialized ones.
// Note that these ones don't return after setting the function.
if (is_KBPsKs<WHITE>(pos))
mi->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
if (is_KBPsKs<BLACK>(pos))
mi->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
if (is_KQKRPs<WHITE>(pos))
mi->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
else if (is_KQKRPs<BLACK>(pos))
mi->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == VALUE_ZERO)
{
if (pos.piece_count(BLACK, PAWN) == 0)
{
assert(pos.piece_count(WHITE, PAWN) >= 2);
mi->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
}
else if (pos.piece_count(WHITE, PAWN) == 0)
{
assert(pos.piece_count(BLACK, PAWN) >= 2);
mi->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
}
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
{
// This is a special case because we set scaling functions
// for both colors instead of only one.
mi->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
mi->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
}
2008-08-31 23:59:13 -06:00
}
// No pawns makes it difficult to win, even with a material advantage
for (Color c = WHITE; c <= BLACK; c++)
if ( pos.piece_count(c, PAWN) == 0
&& pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame)
{
if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c))
|| pos.non_pawn_material(c) < RookValueMidgame)
mi->factor[c] = 0;
else
{
switch (pos.piece_count(c, BISHOP)) {
case 2:
mi->factor[c] = 32;
break;
case 1:
mi->factor[c] = 12;
break;
case 0:
mi->factor[c] = 6;
break;
}
}
}
// Compute the space weight
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >=
2*QueenValueMidgame + 4*RookValueMidgame + 2*KnightValueMidgame)
{
int minorPieceCount = pos.piece_count(WHITE, KNIGHT)
+ pos.piece_count(WHITE, BISHOP)
+ pos.piece_count(BLACK, KNIGHT)
+ pos.piece_count(BLACK, BISHOP);
mi->spaceWeight = minorPieceCount * minorPieceCount;
}
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
// for the bishop pair "extended piece", this allow us to be more flexible
// in defining bishop pair bonuses.
const int pieceCount[2][8] = {
{ pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
pos.piece_count(WHITE, BISHOP), pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
pos.piece_count(BLACK, BISHOP), pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
mi->value = (int16_t)(imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16;
return mi;
}
/// MaterialInfoTable::imbalance() calculates imbalance comparing piece count of each
/// piece type for both colors.
template<Color Us>
int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
int pt1, pt2, pc, vv;
int value = 0;
// Redundancy of major pieces, formula based on Kaufman's paper
// "The Evaluation of Material Imbalances in Chess"
if (pieceCount[Us][ROOK] > 0)
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
// Second-degree polynomial material imbalance by Tord Romstad
for (pt1 = PIECE_TYPE_NONE; pt1 <= QUEEN; pt1++)
{
pc = pieceCount[Us][pt1];
if (!pc)
continue;
vv = LinearCoefficients[pt1];
for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++)
vv += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
value += pc * vv;
2008-08-31 23:59:13 -06:00
}
return value;
}
/// MaterialInfoTable::game_phase() calculates the phase given the current
/// position. Because the phase is strictly a function of the material, it
/// is stored in MaterialInfo.
Phase MaterialInfoTable::game_phase(const Position& pos) {
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
if (npm >= MidgameLimit)
return PHASE_MIDGAME;
if (npm <= EndgameLimit)
return PHASE_ENDGAME;
return Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
2008-08-31 23:59:13 -06:00
}
/// EndgameFunctions member definitions
EndgameFunctions::EndgameFunctions() {
add<EvaluationFunction<KNNK> >("KNNK");
add<EvaluationFunction<KPK> >("KPK");
add<EvaluationFunction<KBNK> >("KBNK");
add<EvaluationFunction<KRKP> >("KRKP");
add<EvaluationFunction<KRKB> >("KRKB");
add<EvaluationFunction<KRKN> >("KRKN");
add<EvaluationFunction<KQKR> >("KQKR");
add<EvaluationFunction<KBBKN> >("KBBKN");
add<ScalingFunction<KNPK> >("KNPK");
add<ScalingFunction<KRPKR> >("KRPKR");
add<ScalingFunction<KBPKB> >("KBPKB");
add<ScalingFunction<KBPPKB> >("KBPPKB");
add<ScalingFunction<KBPKN> >("KBPKN");
add<ScalingFunction<KRPPKRP> >("KRPPKRP");
}
EndgameFunctions::~EndgameFunctions() {
for (EFMap::const_iterator it = maps.first.begin(); it != maps.first.end(); ++it)
delete it->second;
for (SFMap::const_iterator it = maps.second.begin(); it != maps.second.end(); ++it)
delete it->second;
}
Key EndgameFunctions::buildKey(const string& keyCode) {
assert(keyCode.length() > 0 && keyCode.length() < 8);
assert(keyCode[0] == 'K');
string fen;
bool upcase = false;
// Build up a fen string with the given pieces, note that
// the fen string could be of an illegal position.
for (size_t i = 0; i < keyCode.length(); i++)
{
if (keyCode[i] == 'K')
upcase = !upcase;
fen += char(upcase ? toupper(keyCode[i]) : tolower(keyCode[i]));
}
fen += char(8 - keyCode.length() + '0');
fen += "/8/8/8/8/8/8/8 w - -";
return Position(fen, false, 0).get_material_key();
}
const string EndgameFunctions::swapColors(const string& keyCode) {
// Build corresponding key for the opposite color: "KBPKN" -> "KNKBP"
size_t idx = keyCode.find('K', 1);
return keyCode.substr(idx) + keyCode.substr(0, idx);
}
template<class T>
void EndgameFunctions::add(const string& keyCode) {
typedef typename T::Base F;
typedef map<Key, F*> M;
const_cast<M&>(get<F>()).insert(pair<Key, F*>(buildKey(keyCode), new T(WHITE)));
const_cast<M&>(get<F>()).insert(pair<Key, F*>(buildKey(swapColors(keyCode)), new T(BLACK)));
}
template<class T>
T* EndgameFunctions::get(Key key) const {
typename map<Key, T*>::const_iterator it = get<T>().find(key);
return it != get<T>().end() ? it->second : NULL;
}