1
0
Fork 0
alistair23-linux/arch/arm/mm/proc-v7.S

820 lines
25 KiB
ArmAsm
Raw Normal View History

/*
* linux/arch/arm/mm/proc-v7.S
*
* Copyright (C) 2001 Deep Blue Solutions Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This is the "shell" of the ARMv7 processor support.
*/
#include <linux/arm-smccc.h>
#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/assembler.h>
#include <asm/asm-offsets.h>
#include <asm/hwcap.h>
#include <asm/pgtable-hwdef.h>
#include <asm/pgtable.h>
#include <asm/memory.h>
#include "proc-macros.S"
#ifdef CONFIG_ARM_LPAE
#include "proc-v7-3level.S"
#else
#include "proc-v7-2level.S"
#endif
ENTRY(cpu_v7_proc_init)
ARM: convert all "mov.* pc, reg" to "bx reg" for ARMv6+ ARMv6 and greater introduced a new instruction ("bx") which can be used to return from function calls. Recent CPUs perform better when the "bx lr" instruction is used rather than the "mov pc, lr" instruction, and this sequence is strongly recommended to be used by the ARM architecture manual (section A.4.1.1). We provide a new macro "ret" with all its variants for the condition code which will resolve to the appropriate instruction. Rather than doing this piecemeal, and miss some instances, change all the "mov pc" instances to use the new macro, with the exception of the "movs" instruction and the kprobes code. This allows us to detect the "mov pc, lr" case and fix it up - and also gives us the possibility of deploying this for other registers depending on the CPU selection. Reported-by: Will Deacon <will.deacon@arm.com> Tested-by: Stephen Warren <swarren@nvidia.com> # Tegra Jetson TK1 Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> # mioa701_bootresume.S Tested-by: Andrew Lunn <andrew@lunn.ch> # Kirkwood Tested-by: Shawn Guo <shawn.guo@freescale.com> Tested-by: Tony Lindgren <tony@atomide.com> # OMAPs Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> # Armada XP, 375, 385 Acked-by: Sekhar Nori <nsekhar@ti.com> # DaVinci Acked-by: Christoffer Dall <christoffer.dall@linaro.org> # kvm/hyp Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com> # PXA3xx Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> # Xen Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> # ARMv7M Tested-by: Simon Horman <horms+renesas@verge.net.au> # Shmobile Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-06-30 09:29:12 -06:00
ret lr
ENDPROC(cpu_v7_proc_init)
ENTRY(cpu_v7_proc_fin)
mrc p15, 0, r0, c1, c0, 0 @ ctrl register
bic r0, r0, #0x1000 @ ...i............
bic r0, r0, #0x0006 @ .............ca.
mcr p15, 0, r0, c1, c0, 0 @ disable caches
ARM: convert all "mov.* pc, reg" to "bx reg" for ARMv6+ ARMv6 and greater introduced a new instruction ("bx") which can be used to return from function calls. Recent CPUs perform better when the "bx lr" instruction is used rather than the "mov pc, lr" instruction, and this sequence is strongly recommended to be used by the ARM architecture manual (section A.4.1.1). We provide a new macro "ret" with all its variants for the condition code which will resolve to the appropriate instruction. Rather than doing this piecemeal, and miss some instances, change all the "mov pc" instances to use the new macro, with the exception of the "movs" instruction and the kprobes code. This allows us to detect the "mov pc, lr" case and fix it up - and also gives us the possibility of deploying this for other registers depending on the CPU selection. Reported-by: Will Deacon <will.deacon@arm.com> Tested-by: Stephen Warren <swarren@nvidia.com> # Tegra Jetson TK1 Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> # mioa701_bootresume.S Tested-by: Andrew Lunn <andrew@lunn.ch> # Kirkwood Tested-by: Shawn Guo <shawn.guo@freescale.com> Tested-by: Tony Lindgren <tony@atomide.com> # OMAPs Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> # Armada XP, 375, 385 Acked-by: Sekhar Nori <nsekhar@ti.com> # DaVinci Acked-by: Christoffer Dall <christoffer.dall@linaro.org> # kvm/hyp Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com> # PXA3xx Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> # Xen Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> # ARMv7M Tested-by: Simon Horman <horms+renesas@verge.net.au> # Shmobile Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-06-30 09:29:12 -06:00
ret lr
ENDPROC(cpu_v7_proc_fin)
/*
* cpu_v7_reset(loc, hyp)
*
* Perform a soft reset of the system. Put the CPU into the
* same state as it would be if it had been reset, and branch
* to what would be the reset vector.
*
* - loc - location to jump to for soft reset
* - hyp - indicate if restart occurs in HYP mode
*
* This code must be executed using a flat identity mapping with
* caches disabled.
*/
.align 5
.pushsection .idmap.text, "ax"
ENTRY(cpu_v7_reset)
mrc p15, 0, r2, c1, c0, 0 @ ctrl register
bic r2, r2, #0x1 @ ...............m
THUMB( bic r2, r2, #1 << 30 ) @ SCTLR.TE (Thumb exceptions)
mcr p15, 0, r2, c1, c0, 0 @ disable MMU
isb
#ifdef CONFIG_ARM_VIRT_EXT
teq r1, #0
bne __hyp_soft_restart
#endif
bx r0
ENDPROC(cpu_v7_reset)
.popsection
/*
* cpu_v7_do_idle()
*
* Idle the processor (eg, wait for interrupt).
*
* IRQs are already disabled.
*/
ENTRY(cpu_v7_do_idle)
dsb @ WFI may enter a low-power mode
wfi
ARM: convert all "mov.* pc, reg" to "bx reg" for ARMv6+ ARMv6 and greater introduced a new instruction ("bx") which can be used to return from function calls. Recent CPUs perform better when the "bx lr" instruction is used rather than the "mov pc, lr" instruction, and this sequence is strongly recommended to be used by the ARM architecture manual (section A.4.1.1). We provide a new macro "ret" with all its variants for the condition code which will resolve to the appropriate instruction. Rather than doing this piecemeal, and miss some instances, change all the "mov pc" instances to use the new macro, with the exception of the "movs" instruction and the kprobes code. This allows us to detect the "mov pc, lr" case and fix it up - and also gives us the possibility of deploying this for other registers depending on the CPU selection. Reported-by: Will Deacon <will.deacon@arm.com> Tested-by: Stephen Warren <swarren@nvidia.com> # Tegra Jetson TK1 Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> # mioa701_bootresume.S Tested-by: Andrew Lunn <andrew@lunn.ch> # Kirkwood Tested-by: Shawn Guo <shawn.guo@freescale.com> Tested-by: Tony Lindgren <tony@atomide.com> # OMAPs Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> # Armada XP, 375, 385 Acked-by: Sekhar Nori <nsekhar@ti.com> # DaVinci Acked-by: Christoffer Dall <christoffer.dall@linaro.org> # kvm/hyp Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com> # PXA3xx Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> # Xen Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> # ARMv7M Tested-by: Simon Horman <horms+renesas@verge.net.au> # Shmobile Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-06-30 09:29:12 -06:00
ret lr
ENDPROC(cpu_v7_do_idle)
ENTRY(cpu_v7_dcache_clean_area)
ALT_SMP(W(nop)) @ MP extensions imply L1 PTW
ALT_UP_B(1f)
ARM: convert all "mov.* pc, reg" to "bx reg" for ARMv6+ ARMv6 and greater introduced a new instruction ("bx") which can be used to return from function calls. Recent CPUs perform better when the "bx lr" instruction is used rather than the "mov pc, lr" instruction, and this sequence is strongly recommended to be used by the ARM architecture manual (section A.4.1.1). We provide a new macro "ret" with all its variants for the condition code which will resolve to the appropriate instruction. Rather than doing this piecemeal, and miss some instances, change all the "mov pc" instances to use the new macro, with the exception of the "movs" instruction and the kprobes code. This allows us to detect the "mov pc, lr" case and fix it up - and also gives us the possibility of deploying this for other registers depending on the CPU selection. Reported-by: Will Deacon <will.deacon@arm.com> Tested-by: Stephen Warren <swarren@nvidia.com> # Tegra Jetson TK1 Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> # mioa701_bootresume.S Tested-by: Andrew Lunn <andrew@lunn.ch> # Kirkwood Tested-by: Shawn Guo <shawn.guo@freescale.com> Tested-by: Tony Lindgren <tony@atomide.com> # OMAPs Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> # Armada XP, 375, 385 Acked-by: Sekhar Nori <nsekhar@ti.com> # DaVinci Acked-by: Christoffer Dall <christoffer.dall@linaro.org> # kvm/hyp Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com> # PXA3xx Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> # Xen Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> # ARMv7M Tested-by: Simon Horman <horms+renesas@verge.net.au> # Shmobile Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-06-30 09:29:12 -06:00
ret lr
1: dcache_line_size r2, r3
2: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
add r0, r0, r2
subs r1, r1, r2
bhi 2b
dsb ishst
ARM: convert all "mov.* pc, reg" to "bx reg" for ARMv6+ ARMv6 and greater introduced a new instruction ("bx") which can be used to return from function calls. Recent CPUs perform better when the "bx lr" instruction is used rather than the "mov pc, lr" instruction, and this sequence is strongly recommended to be used by the ARM architecture manual (section A.4.1.1). We provide a new macro "ret" with all its variants for the condition code which will resolve to the appropriate instruction. Rather than doing this piecemeal, and miss some instances, change all the "mov pc" instances to use the new macro, with the exception of the "movs" instruction and the kprobes code. This allows us to detect the "mov pc, lr" case and fix it up - and also gives us the possibility of deploying this for other registers depending on the CPU selection. Reported-by: Will Deacon <will.deacon@arm.com> Tested-by: Stephen Warren <swarren@nvidia.com> # Tegra Jetson TK1 Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> # mioa701_bootresume.S Tested-by: Andrew Lunn <andrew@lunn.ch> # Kirkwood Tested-by: Shawn Guo <shawn.guo@freescale.com> Tested-by: Tony Lindgren <tony@atomide.com> # OMAPs Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> # Armada XP, 375, 385 Acked-by: Sekhar Nori <nsekhar@ti.com> # DaVinci Acked-by: Christoffer Dall <christoffer.dall@linaro.org> # kvm/hyp Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com> # PXA3xx Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> # Xen Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> # ARMv7M Tested-by: Simon Horman <horms+renesas@verge.net.au> # Shmobile Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-06-30 09:29:12 -06:00
ret lr
ENDPROC(cpu_v7_dcache_clean_area)
#ifdef CONFIG_ARM_PSCI
.arch_extension sec
ENTRY(cpu_v7_smc_switch_mm)
stmfd sp!, {r0 - r3}
movw r0, #:lower16:ARM_SMCCC_ARCH_WORKAROUND_1
movt r0, #:upper16:ARM_SMCCC_ARCH_WORKAROUND_1
smc #0
ldmfd sp!, {r0 - r3}
b cpu_v7_switch_mm
ENDPROC(cpu_v7_smc_switch_mm)
.arch_extension virt
ENTRY(cpu_v7_hvc_switch_mm)
stmfd sp!, {r0 - r3}
movw r0, #:lower16:ARM_SMCCC_ARCH_WORKAROUND_1
movt r0, #:upper16:ARM_SMCCC_ARCH_WORKAROUND_1
hvc #0
ldmfd sp!, {r0 - r3}
b cpu_v7_switch_mm
ENDPROC(cpu_v7_hvc_switch_mm)
#endif
ENTRY(cpu_v7_iciallu_switch_mm)
mov r3, #0
mcr p15, 0, r3, c7, c5, 0 @ ICIALLU
b cpu_v7_switch_mm
ENDPROC(cpu_v7_iciallu_switch_mm)
ENTRY(cpu_v7_bpiall_switch_mm)
mov r3, #0
mcr p15, 0, r3, c7, c5, 6 @ flush BTAC/BTB
b cpu_v7_switch_mm
ENDPROC(cpu_v7_bpiall_switch_mm)
string cpu_v7_name, "ARMv7 Processor"
.align
/* Suspend/resume support: derived from arch/arm/mach-s5pv210/sleep.S */
.globl cpu_v7_suspend_size
.equ cpu_v7_suspend_size, 4 * 9
#ifdef CONFIG_ARM_CPU_SUSPEND
ENTRY(cpu_v7_do_suspend)
stmfd sp!, {r4 - r11, lr}
mrc p15, 0, r4, c13, c0, 0 @ FCSE/PID
mrc p15, 0, r5, c13, c0, 3 @ User r/o thread ID
stmia r0!, {r4 - r5}
#ifdef CONFIG_MMU
mrc p15, 0, r6, c3, c0, 0 @ Domain ID
#ifdef CONFIG_ARM_LPAE
mrrc p15, 1, r5, r7, c2 @ TTB 1
#else
mrc p15, 0, r7, c2, c0, 1 @ TTB 1
#endif
mrc p15, 0, r11, c2, c0, 2 @ TTB control register
#endif
mrc p15, 0, r8, c1, c0, 0 @ Control register
mrc p15, 0, r9, c1, c0, 1 @ Auxiliary control register
mrc p15, 0, r10, c1, c0, 2 @ Co-processor access control
stmia r0, {r5 - r11}
ldmfd sp!, {r4 - r11, pc}
ENDPROC(cpu_v7_do_suspend)
ENTRY(cpu_v7_do_resume)
mov ip, #0
mcr p15, 0, ip, c7, c5, 0 @ invalidate I cache
mcr p15, 0, ip, c13, c0, 1 @ set reserved context ID
ldmia r0!, {r4 - r5}
mcr p15, 0, r4, c13, c0, 0 @ FCSE/PID
mcr p15, 0, r5, c13, c0, 3 @ User r/o thread ID
ldmia r0, {r5 - r11}
#ifdef CONFIG_MMU
mcr p15, 0, ip, c8, c7, 0 @ invalidate TLBs
mcr p15, 0, r6, c3, c0, 0 @ Domain ID
#ifdef CONFIG_ARM_LPAE
mcrr p15, 0, r1, ip, c2 @ TTB 0
mcrr p15, 1, r5, r7, c2 @ TTB 1
#else
ALT_SMP(orr r1, r1, #TTB_FLAGS_SMP)
ALT_UP(orr r1, r1, #TTB_FLAGS_UP)
mcr p15, 0, r1, c2, c0, 0 @ TTB 0
mcr p15, 0, r7, c2, c0, 1 @ TTB 1
#endif
mcr p15, 0, r11, c2, c0, 2 @ TTB control register
ldr r4, =PRRR @ PRRR
ldr r5, =NMRR @ NMRR
mcr p15, 0, r4, c10, c2, 0 @ write PRRR
mcr p15, 0, r5, c10, c2, 1 @ write NMRR
#endif /* CONFIG_MMU */
mrc p15, 0, r4, c1, c0, 1 @ Read Auxiliary control register
teq r4, r9 @ Is it already set?
mcrne p15, 0, r9, c1, c0, 1 @ No, so write it
mcr p15, 0, r10, c1, c0, 2 @ Co-processor access control
isb
dsb
mov r0, r8 @ control register
b cpu_resume_mmu
ENDPROC(cpu_v7_do_resume)
#endif
.globl cpu_ca9mp_suspend_size
.equ cpu_ca9mp_suspend_size, cpu_v7_suspend_size + 4 * 2
#ifdef CONFIG_ARM_CPU_SUSPEND
ENTRY(cpu_ca9mp_do_suspend)
stmfd sp!, {r4 - r5}
mrc p15, 0, r4, c15, c0, 1 @ Diagnostic register
mrc p15, 0, r5, c15, c0, 0 @ Power register
stmia r0!, {r4 - r5}
ldmfd sp!, {r4 - r5}
b cpu_v7_do_suspend
ENDPROC(cpu_ca9mp_do_suspend)
ENTRY(cpu_ca9mp_do_resume)
ldmia r0!, {r4 - r5}
mrc p15, 0, r10, c15, c0, 1 @ Read Diagnostic register
teq r4, r10 @ Already restored?
mcrne p15, 0, r4, c15, c0, 1 @ No, so restore it
mrc p15, 0, r10, c15, c0, 0 @ Read Power register
teq r5, r10 @ Already restored?
mcrne p15, 0, r5, c15, c0, 0 @ No, so restore it
b cpu_v7_do_resume
ENDPROC(cpu_ca9mp_do_resume)
#endif
#ifdef CONFIG_CPU_PJ4B
globl_equ cpu_pj4b_switch_mm, cpu_v7_switch_mm
globl_equ cpu_pj4b_set_pte_ext, cpu_v7_set_pte_ext
globl_equ cpu_pj4b_proc_init, cpu_v7_proc_init
globl_equ cpu_pj4b_proc_fin, cpu_v7_proc_fin
globl_equ cpu_pj4b_reset, cpu_v7_reset
#ifdef CONFIG_PJ4B_ERRATA_4742
ENTRY(cpu_pj4b_do_idle)
dsb @ WFI may enter a low-power mode
wfi
dsb @barrier
ARM: convert all "mov.* pc, reg" to "bx reg" for ARMv6+ ARMv6 and greater introduced a new instruction ("bx") which can be used to return from function calls. Recent CPUs perform better when the "bx lr" instruction is used rather than the "mov pc, lr" instruction, and this sequence is strongly recommended to be used by the ARM architecture manual (section A.4.1.1). We provide a new macro "ret" with all its variants for the condition code which will resolve to the appropriate instruction. Rather than doing this piecemeal, and miss some instances, change all the "mov pc" instances to use the new macro, with the exception of the "movs" instruction and the kprobes code. This allows us to detect the "mov pc, lr" case and fix it up - and also gives us the possibility of deploying this for other registers depending on the CPU selection. Reported-by: Will Deacon <will.deacon@arm.com> Tested-by: Stephen Warren <swarren@nvidia.com> # Tegra Jetson TK1 Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> # mioa701_bootresume.S Tested-by: Andrew Lunn <andrew@lunn.ch> # Kirkwood Tested-by: Shawn Guo <shawn.guo@freescale.com> Tested-by: Tony Lindgren <tony@atomide.com> # OMAPs Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> # Armada XP, 375, 385 Acked-by: Sekhar Nori <nsekhar@ti.com> # DaVinci Acked-by: Christoffer Dall <christoffer.dall@linaro.org> # kvm/hyp Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com> # PXA3xx Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> # Xen Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> # ARMv7M Tested-by: Simon Horman <horms+renesas@verge.net.au> # Shmobile Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-06-30 09:29:12 -06:00
ret lr
ENDPROC(cpu_pj4b_do_idle)
#else
globl_equ cpu_pj4b_do_idle, cpu_v7_do_idle
#endif
globl_equ cpu_pj4b_dcache_clean_area, cpu_v7_dcache_clean_area
#ifdef CONFIG_ARM_CPU_SUSPEND
ENTRY(cpu_pj4b_do_suspend)
stmfd sp!, {r6 - r10}
mrc p15, 1, r6, c15, c1, 0 @ save CP15 - extra features
mrc p15, 1, r7, c15, c2, 0 @ save CP15 - Aux Func Modes Ctrl 0
mrc p15, 1, r8, c15, c1, 2 @ save CP15 - Aux Debug Modes Ctrl 2
mrc p15, 1, r9, c15, c1, 1 @ save CP15 - Aux Debug Modes Ctrl 1
mrc p15, 0, r10, c9, c14, 0 @ save CP15 - PMC
stmia r0!, {r6 - r10}
ldmfd sp!, {r6 - r10}
b cpu_v7_do_suspend
ENDPROC(cpu_pj4b_do_suspend)
ENTRY(cpu_pj4b_do_resume)
ldmia r0!, {r6 - r10}
mcr p15, 1, r6, c15, c1, 0 @ restore CP15 - extra features
mcr p15, 1, r7, c15, c2, 0 @ restore CP15 - Aux Func Modes Ctrl 0
mcr p15, 1, r8, c15, c1, 2 @ restore CP15 - Aux Debug Modes Ctrl 2
mcr p15, 1, r9, c15, c1, 1 @ restore CP15 - Aux Debug Modes Ctrl 1
mcr p15, 0, r10, c9, c14, 0 @ restore CP15 - PMC
b cpu_v7_do_resume
ENDPROC(cpu_pj4b_do_resume)
#endif
.globl cpu_pj4b_suspend_size
.equ cpu_pj4b_suspend_size, cpu_v7_suspend_size + 4 * 5
#endif
/*
* __v7_setup
*
* Initialise TLB, Caches, and MMU state ready to switch the MMU
* on. Return in r0 the new CP15 C1 control register setting.
*
* r1, r2, r4, r5, r9, r13 must be preserved - r13 is not a stack
* r4: TTBR0 (low word)
* r5: TTBR0 (high word if LPAE)
* r8: TTBR1
* r9: Main ID register
*
* This should be able to cover all ARMv7 cores.
*
* It is assumed that:
* - cache type register is implemented
*/
__v7_ca5mp_setup:
__v7_ca9mp_setup:
__v7_cr7mp_setup:
__v7_cr8mp_setup:
mov r10, #(1 << 0) @ Cache/TLB ops broadcasting
b 1f
__v7_ca7mp_setup:
__v7_ca12mp_setup:
__v7_ca15mp_setup:
__v7_b15mp_setup:
__v7_ca17mp_setup:
mov r10, #0
1: adr r0, __v7_setup_stack_ptr
ldr r12, [r0]
add r12, r12, r0 @ the local stack
stmia r12, {r1-r6, lr} @ v7_invalidate_l1 touches r0-r6
bl v7_invalidate_l1
ldmia r12, {r1-r6, lr}
#ifdef CONFIG_SMP
orr r10, r10, #(1 << 6) @ Enable SMP/nAMP mode
ALT_SMP(mrc p15, 0, r0, c1, c0, 1)
ALT_UP(mov r0, r10) @ fake it for UP
orr r10, r10, r0 @ Set required bits
teq r10, r0 @ Were they already set?
mcrne p15, 0, r10, c1, c0, 1 @ No, update register
#endif
b __v7_setup_cont
/*
* Errata:
* r0, r10 available for use
* r1, r2, r4, r5, r9, r13: must be preserved
* r3: contains MIDR rX number in bits 23-20
* r6: contains MIDR rXpY as 8-bit XY number
* r9: MIDR
*/
__ca8_errata:
#if defined(CONFIG_ARM_ERRATA_430973) && !defined(CONFIG_ARCH_MULTIPLATFORM)
teq r3, #0x00100000 @ only present in r1p*
mrceq p15, 0, r0, c1, c0, 1 @ read aux control register
orreq r0, r0, #(1 << 6) @ set IBE to 1
mcreq p15, 0, r0, c1, c0, 1 @ write aux control register
#endif
#ifdef CONFIG_ARM_ERRATA_458693
teq r6, #0x20 @ only present in r2p0
mrceq p15, 0, r0, c1, c0, 1 @ read aux control register
orreq r0, r0, #(1 << 5) @ set L1NEON to 1
orreq r0, r0, #(1 << 9) @ set PLDNOP to 1
mcreq p15, 0, r0, c1, c0, 1 @ write aux control register
#endif
#ifdef CONFIG_ARM_ERRATA_460075
teq r6, #0x20 @ only present in r2p0
mrceq p15, 1, r0, c9, c0, 2 @ read L2 cache aux ctrl register
tsteq r0, #1 << 22
orreq r0, r0, #(1 << 22) @ set the Write Allocate disable bit
mcreq p15, 1, r0, c9, c0, 2 @ write the L2 cache aux ctrl register
#endif
b __errata_finish
__ca9_errata:
#ifdef CONFIG_ARM_ERRATA_742230
cmp r6, #0x22 @ only present up to r2p2
mrcle p15, 0, r0, c15, c0, 1 @ read diagnostic register
orrle r0, r0, #1 << 4 @ set bit #4
mcrle p15, 0, r0, c15, c0, 1 @ write diagnostic register
#endif
#ifdef CONFIG_ARM_ERRATA_742231
teq r6, #0x20 @ present in r2p0
teqne r6, #0x21 @ present in r2p1
teqne r6, #0x22 @ present in r2p2
mrceq p15, 0, r0, c15, c0, 1 @ read diagnostic register
orreq r0, r0, #1 << 12 @ set bit #12
orreq r0, r0, #1 << 22 @ set bit #22
mcreq p15, 0, r0, c15, c0, 1 @ write diagnostic register
#endif
#ifdef CONFIG_ARM_ERRATA_743622
teq r3, #0x00200000 @ only present in r2p*
mrceq p15, 0, r0, c15, c0, 1 @ read diagnostic register
orreq r0, r0, #1 << 6 @ set bit #6
mcreq p15, 0, r0, c15, c0, 1 @ write diagnostic register
#endif
#if defined(CONFIG_ARM_ERRATA_751472) && defined(CONFIG_SMP)
ALT_SMP(cmp r6, #0x30) @ present prior to r3p0
ALT_UP_B(1f)
mrclt p15, 0, r0, c15, c0, 1 @ read diagnostic register
orrlt r0, r0, #1 << 11 @ set bit #11
mcrlt p15, 0, r0, c15, c0, 1 @ write diagnostic register
1:
#endif
b __errata_finish
__ca15_errata:
#ifdef CONFIG_ARM_ERRATA_773022
cmp r6, #0x4 @ only present up to r0p4
mrcle p15, 0, r0, c1, c0, 1 @ read aux control register
orrle r0, r0, #1 << 1 @ disable loop buffer
mcrle p15, 0, r0, c1, c0, 1 @ write aux control register
#endif
b __errata_finish
ARM: 8558/1: errata: Workaround errata A12 818325/852422 A17 852423 There are several similar errata on Cortex A12 and A17 that all have the same workaround: setting bit[12] of the Feature Register. Technically the list of errata are: - A12 818325: Execution of an UNPREDICTABLE STR or STM instruction might deadlock. Fixed in r0p1. - A12 852422: Execution of a sequence of instructions might lead to either a data corruption or a CPU deadlock. Not fixed in any A12s yet. - A17 852423: Execution of a sequence of instructions might lead to either a data corruption or a CPU deadlock. Not fixed in any A17s yet. Since A12 got renamed to A17 it seems likely that there won't be any future Cortex-A12 cores, so we'll enable for all Cortex-A12. For Cortex-A17 I believe that all known revisions are affected and that all knows revisions means <= r1p2. Presumably if a new A17 was released it would have this problem fixed. Note that in <https://patchwork.kernel.org/patch/4735341/> folks previously expressed opposition to this change because: A) It was thought to only apply to r0p0 and there were no known r0p0 boards supported in mainline. B) It was argued that such a workaround beloned in firmware. Now that this same fix solves other errata on real boards (like rk3288) point A) is addressed. Point B) is impossible to address on boards like rk3288. On rk3288 the firmware doesn't stay resident in RAM and isn't involved at all in the suspend/resume process nor in the SMP bringup process. That means that the most the firmware could do would be to set the bit on "core 0" and this bit would be lost at suspend/resume time. It is true that we could write a "generic" solution that saved the boot-time "core 0" value of this register and applied it at SMP bringup / resume time. However, since this register (described as the "Feature Register" in errata) appears to be undocumented (as far as I can tell) and is only modified for these errata, that "generic" solution seems questionably cleaner. The generic solution also won't fix existing users that haven't happened to do a FW update. Note that in ARM64 presumably PSCI will be universal and fixes like this will end up in ATF. Hopefully we are nearing the end of this style of errata workaround. Signed-off-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Huang Tao <huangtao@rock-chips.com> Signed-off-by: Kever Yang <kever.yang@rock-chips.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-04-06 17:25:00 -06:00
__ca12_errata:
#ifdef CONFIG_ARM_ERRATA_818325_852422
mrc p15, 0, r10, c15, c0, 1 @ read diagnostic register
orr r10, r10, #1 << 12 @ set bit #12
mcr p15, 0, r10, c15, c0, 1 @ write diagnostic register
#endif
#ifdef CONFIG_ARM_ERRATA_821420
mrc p15, 0, r10, c15, c0, 2 @ read internal feature reg
orr r10, r10, #1 << 1 @ set bit #1
mcr p15, 0, r10, c15, c0, 2 @ write internal feature reg
#endif
#ifdef CONFIG_ARM_ERRATA_825619
mrc p15, 0, r10, c15, c0, 1 @ read diagnostic register
orr r10, r10, #1 << 24 @ set bit #24
mcr p15, 0, r10, c15, c0, 1 @ write diagnostic register
ARM: 8558/1: errata: Workaround errata A12 818325/852422 A17 852423 There are several similar errata on Cortex A12 and A17 that all have the same workaround: setting bit[12] of the Feature Register. Technically the list of errata are: - A12 818325: Execution of an UNPREDICTABLE STR or STM instruction might deadlock. Fixed in r0p1. - A12 852422: Execution of a sequence of instructions might lead to either a data corruption or a CPU deadlock. Not fixed in any A12s yet. - A17 852423: Execution of a sequence of instructions might lead to either a data corruption or a CPU deadlock. Not fixed in any A17s yet. Since A12 got renamed to A17 it seems likely that there won't be any future Cortex-A12 cores, so we'll enable for all Cortex-A12. For Cortex-A17 I believe that all known revisions are affected and that all knows revisions means <= r1p2. Presumably if a new A17 was released it would have this problem fixed. Note that in <https://patchwork.kernel.org/patch/4735341/> folks previously expressed opposition to this change because: A) It was thought to only apply to r0p0 and there were no known r0p0 boards supported in mainline. B) It was argued that such a workaround beloned in firmware. Now that this same fix solves other errata on real boards (like rk3288) point A) is addressed. Point B) is impossible to address on boards like rk3288. On rk3288 the firmware doesn't stay resident in RAM and isn't involved at all in the suspend/resume process nor in the SMP bringup process. That means that the most the firmware could do would be to set the bit on "core 0" and this bit would be lost at suspend/resume time. It is true that we could write a "generic" solution that saved the boot-time "core 0" value of this register and applied it at SMP bringup / resume time. However, since this register (described as the "Feature Register" in errata) appears to be undocumented (as far as I can tell) and is only modified for these errata, that "generic" solution seems questionably cleaner. The generic solution also won't fix existing users that haven't happened to do a FW update. Note that in ARM64 presumably PSCI will be universal and fixes like this will end up in ATF. Hopefully we are nearing the end of this style of errata workaround. Signed-off-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Huang Tao <huangtao@rock-chips.com> Signed-off-by: Kever Yang <kever.yang@rock-chips.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-04-06 17:25:00 -06:00
#endif
b __errata_finish
__ca17_errata:
#ifdef CONFIG_ARM_ERRATA_852421
cmp r6, #0x12 @ only present up to r1p2
mrcle p15, 0, r10, c15, c0, 1 @ read diagnostic register
orrle r10, r10, #1 << 24 @ set bit #24
mcrle p15, 0, r10, c15, c0, 1 @ write diagnostic register
#endif
ARM: 8558/1: errata: Workaround errata A12 818325/852422 A17 852423 There are several similar errata on Cortex A12 and A17 that all have the same workaround: setting bit[12] of the Feature Register. Technically the list of errata are: - A12 818325: Execution of an UNPREDICTABLE STR or STM instruction might deadlock. Fixed in r0p1. - A12 852422: Execution of a sequence of instructions might lead to either a data corruption or a CPU deadlock. Not fixed in any A12s yet. - A17 852423: Execution of a sequence of instructions might lead to either a data corruption or a CPU deadlock. Not fixed in any A17s yet. Since A12 got renamed to A17 it seems likely that there won't be any future Cortex-A12 cores, so we'll enable for all Cortex-A12. For Cortex-A17 I believe that all known revisions are affected and that all knows revisions means <= r1p2. Presumably if a new A17 was released it would have this problem fixed. Note that in <https://patchwork.kernel.org/patch/4735341/> folks previously expressed opposition to this change because: A) It was thought to only apply to r0p0 and there were no known r0p0 boards supported in mainline. B) It was argued that such a workaround beloned in firmware. Now that this same fix solves other errata on real boards (like rk3288) point A) is addressed. Point B) is impossible to address on boards like rk3288. On rk3288 the firmware doesn't stay resident in RAM and isn't involved at all in the suspend/resume process nor in the SMP bringup process. That means that the most the firmware could do would be to set the bit on "core 0" and this bit would be lost at suspend/resume time. It is true that we could write a "generic" solution that saved the boot-time "core 0" value of this register and applied it at SMP bringup / resume time. However, since this register (described as the "Feature Register" in errata) appears to be undocumented (as far as I can tell) and is only modified for these errata, that "generic" solution seems questionably cleaner. The generic solution also won't fix existing users that haven't happened to do a FW update. Note that in ARM64 presumably PSCI will be universal and fixes like this will end up in ATF. Hopefully we are nearing the end of this style of errata workaround. Signed-off-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Huang Tao <huangtao@rock-chips.com> Signed-off-by: Kever Yang <kever.yang@rock-chips.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-04-06 17:25:00 -06:00
#ifdef CONFIG_ARM_ERRATA_852423
cmp r6, #0x12 @ only present up to r1p2
mrcle p15, 0, r10, c15, c0, 1 @ read diagnostic register
orrle r10, r10, #1 << 12 @ set bit #12
mcrle p15, 0, r10, c15, c0, 1 @ write diagnostic register
#endif
b __errata_finish
__v7_pj4b_setup:
#ifdef CONFIG_CPU_PJ4B
/* Auxiliary Debug Modes Control 1 Register */
#define PJ4B_STATIC_BP (1 << 2) /* Enable Static BP */
#define PJ4B_INTER_PARITY (1 << 8) /* Disable Internal Parity Handling */
#define PJ4B_CLEAN_LINE (1 << 16) /* Disable data transfer for clean line */
/* Auxiliary Debug Modes Control 2 Register */
#define PJ4B_FAST_LDR (1 << 23) /* Disable fast LDR */
#define PJ4B_SNOOP_DATA (1 << 25) /* Do not interleave write and snoop data */
#define PJ4B_CWF (1 << 27) /* Disable Critical Word First feature */
#define PJ4B_OUTSDNG_NC (1 << 29) /* Disable outstanding non cacheable rqst */
#define PJ4B_L1_REP_RR (1 << 30) /* L1 replacement - Strict round robin */
#define PJ4B_AUX_DBG_CTRL2 (PJ4B_SNOOP_DATA | PJ4B_CWF |\
PJ4B_OUTSDNG_NC | PJ4B_L1_REP_RR)
/* Auxiliary Functional Modes Control Register 0 */
#define PJ4B_SMP_CFB (1 << 1) /* Set SMP mode. Join the coherency fabric */
#define PJ4B_L1_PAR_CHK (1 << 2) /* Support L1 parity checking */
#define PJ4B_BROADCAST_CACHE (1 << 8) /* Broadcast Cache and TLB maintenance */
/* Auxiliary Debug Modes Control 0 Register */
#define PJ4B_WFI_WFE (1 << 22) /* WFI/WFE - serve the DVM and back to idle */
/* Auxiliary Debug Modes Control 1 Register */
mrc p15, 1, r0, c15, c1, 1
orr r0, r0, #PJ4B_CLEAN_LINE
orr r0, r0, #PJ4B_INTER_PARITY
bic r0, r0, #PJ4B_STATIC_BP
mcr p15, 1, r0, c15, c1, 1
/* Auxiliary Debug Modes Control 2 Register */
mrc p15, 1, r0, c15, c1, 2
bic r0, r0, #PJ4B_FAST_LDR
orr r0, r0, #PJ4B_AUX_DBG_CTRL2
mcr p15, 1, r0, c15, c1, 2
/* Auxiliary Functional Modes Control Register 0 */
mrc p15, 1, r0, c15, c2, 0
#ifdef CONFIG_SMP
orr r0, r0, #PJ4B_SMP_CFB
#endif
orr r0, r0, #PJ4B_L1_PAR_CHK
orr r0, r0, #PJ4B_BROADCAST_CACHE
mcr p15, 1, r0, c15, c2, 0
/* Auxiliary Debug Modes Control 0 Register */
mrc p15, 1, r0, c15, c1, 0
orr r0, r0, #PJ4B_WFI_WFE
mcr p15, 1, r0, c15, c1, 0
#endif /* CONFIG_CPU_PJ4B */
__v7_setup:
adr r0, __v7_setup_stack_ptr
ldr r12, [r0]
add r12, r12, r0 @ the local stack
stmia r12, {r1-r6, lr} @ v7_invalidate_l1 touches r0-r6
ARM: v7 setup function should invalidate L1 cache All ARMv5 and older CPUs invalidate their caches in the early assembly setup function, prior to enabling the MMU. This is because the L1 cache should not contain any data relevant to the execution of the kernel at this point; all data should have been flushed out to memory. This requirement should also be true for ARMv6 and ARMv7 CPUs - indeed, these typically do not search their caches when caching is disabled (as it needs to be when the MMU is disabled) so this change should be safe. ARMv7 allows there to be CPUs which search their caches while caching is disabled, and it's permitted that the cache is uninitialised at boot; for these, the architecture reference manual requires that an implementation specific code sequence is used immediately after reset to ensure that the cache is placed into a sane state. Such functionality is definitely outside the remit of the Linux kernel, and must be done by the SoC's firmware before _any_ CPU gets to the Linux kernel. Changing the data cache clean+invalidate to a mere invalidate allows us to get rid of a lot of platform specific hacks around this issue for their secondary CPU bringup paths - some of which were buggy. Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Tested-by: Florian Fainelli <f.fainelli@gmail.com> Tested-by: Heiko Stuebner <heiko@sntech.de> Tested-by: Dinh Nguyen <dinguyen@opensource.altera.com> Acked-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com> Tested-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com> Acked-by: Shawn Guo <shawn.guo@linaro.org> Tested-by: Thierry Reding <treding@nvidia.com> Acked-by: Thierry Reding <treding@nvidia.com> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Michal Simek <michal.simek@xilinx.com> Tested-by: Wei Xu <xuwei5@hisilicon.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-05-19 10:06:44 -06:00
bl v7_invalidate_l1
ldmia r12, {r1-r6, lr}
__v7_setup_cont:
and r0, r9, #0xff000000 @ ARM?
teq r0, #0x41000000
bne __errata_finish
and r3, r9, #0x00f00000 @ variant
and r6, r9, #0x0000000f @ revision
orr r6, r6, r3, lsr #20-4 @ combine variant and revision
ubfx r0, r9, #4, #12 @ primary part number
/* Cortex-A8 Errata */
ldr r10, =0x00000c08 @ Cortex-A8 primary part number
teq r0, r10
beq __ca8_errata
/* Cortex-A9 Errata */
ldr r10, =0x00000c09 @ Cortex-A9 primary part number
teq r0, r10
beq __ca9_errata
ARM: 8558/1: errata: Workaround errata A12 818325/852422 A17 852423 There are several similar errata on Cortex A12 and A17 that all have the same workaround: setting bit[12] of the Feature Register. Technically the list of errata are: - A12 818325: Execution of an UNPREDICTABLE STR or STM instruction might deadlock. Fixed in r0p1. - A12 852422: Execution of a sequence of instructions might lead to either a data corruption or a CPU deadlock. Not fixed in any A12s yet. - A17 852423: Execution of a sequence of instructions might lead to either a data corruption or a CPU deadlock. Not fixed in any A17s yet. Since A12 got renamed to A17 it seems likely that there won't be any future Cortex-A12 cores, so we'll enable for all Cortex-A12. For Cortex-A17 I believe that all known revisions are affected and that all knows revisions means <= r1p2. Presumably if a new A17 was released it would have this problem fixed. Note that in <https://patchwork.kernel.org/patch/4735341/> folks previously expressed opposition to this change because: A) It was thought to only apply to r0p0 and there were no known r0p0 boards supported in mainline. B) It was argued that such a workaround beloned in firmware. Now that this same fix solves other errata on real boards (like rk3288) point A) is addressed. Point B) is impossible to address on boards like rk3288. On rk3288 the firmware doesn't stay resident in RAM and isn't involved at all in the suspend/resume process nor in the SMP bringup process. That means that the most the firmware could do would be to set the bit on "core 0" and this bit would be lost at suspend/resume time. It is true that we could write a "generic" solution that saved the boot-time "core 0" value of this register and applied it at SMP bringup / resume time. However, since this register (described as the "Feature Register" in errata) appears to be undocumented (as far as I can tell) and is only modified for these errata, that "generic" solution seems questionably cleaner. The generic solution also won't fix existing users that haven't happened to do a FW update. Note that in ARM64 presumably PSCI will be universal and fixes like this will end up in ATF. Hopefully we are nearing the end of this style of errata workaround. Signed-off-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Huang Tao <huangtao@rock-chips.com> Signed-off-by: Kever Yang <kever.yang@rock-chips.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-04-06 17:25:00 -06:00
/* Cortex-A12 Errata */
ldr r10, =0x00000c0d @ Cortex-A12 primary part number
teq r0, r10
beq __ca12_errata
/* Cortex-A17 Errata */
ldr r10, =0x00000c0e @ Cortex-A17 primary part number
teq r0, r10
beq __ca17_errata
/* Cortex-A15 Errata */
ldr r10, =0x00000c0f @ Cortex-A15 primary part number
teq r0, r10
beq __ca15_errata
__errata_finish:
mov r10, #0
mcr p15, 0, r10, c7, c5, 0 @ I+BTB cache invalidate
#ifdef CONFIG_MMU
mcr p15, 0, r10, c8, c7, 0 @ invalidate I + D TLBs
v7_ttb_setup r10, r4, r5, r8, r3 @ TTBCR, TTBRx setup
ldr r3, =PRRR @ PRRR
ldr r6, =NMRR @ NMRR
mcr p15, 0, r3, c10, c2, 0 @ write PRRR
mcr p15, 0, r6, c10, c2, 1 @ write NMRR
#endif
dsb @ Complete invalidations
#ifndef CONFIG_ARM_THUMBEE
mrc p15, 0, r0, c0, c1, 0 @ read ID_PFR0 for ThumbEE
and r0, r0, #(0xf << 12) @ ThumbEE enabled field
teq r0, #(1 << 12) @ check if ThumbEE is present
bne 1f
mov r3, #0
mcr p14, 6, r3, c1, c0, 0 @ Initialize TEEHBR to 0
mrc p14, 6, r0, c0, c0, 0 @ load TEECR
orr r0, r0, #1 @ set the 1st bit in order to
mcr p14, 6, r0, c0, c0, 0 @ stop userspace TEEHBR access
1:
#endif
adr r3, v7_crval
ldmia r3, {r3, r6}
ARM_BE8(orr r6, r6, #1 << 25) @ big-endian page tables
#ifdef CONFIG_SWP_EMULATE
orr r3, r3, #(1 << 10) @ set SW bit in "clear"
bic r6, r6, #(1 << 10) @ clear it in "mmuset"
#endif
mrc p15, 0, r0, c1, c0, 0 @ read control register
bic r0, r0, r3 @ clear bits them
orr r0, r0, r6 @ set them
THUMB( orr r0, r0, #1 << 30 ) @ Thumb exceptions
ARM: convert all "mov.* pc, reg" to "bx reg" for ARMv6+ ARMv6 and greater introduced a new instruction ("bx") which can be used to return from function calls. Recent CPUs perform better when the "bx lr" instruction is used rather than the "mov pc, lr" instruction, and this sequence is strongly recommended to be used by the ARM architecture manual (section A.4.1.1). We provide a new macro "ret" with all its variants for the condition code which will resolve to the appropriate instruction. Rather than doing this piecemeal, and miss some instances, change all the "mov pc" instances to use the new macro, with the exception of the "movs" instruction and the kprobes code. This allows us to detect the "mov pc, lr" case and fix it up - and also gives us the possibility of deploying this for other registers depending on the CPU selection. Reported-by: Will Deacon <will.deacon@arm.com> Tested-by: Stephen Warren <swarren@nvidia.com> # Tegra Jetson TK1 Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> # mioa701_bootresume.S Tested-by: Andrew Lunn <andrew@lunn.ch> # Kirkwood Tested-by: Shawn Guo <shawn.guo@freescale.com> Tested-by: Tony Lindgren <tony@atomide.com> # OMAPs Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> # Armada XP, 375, 385 Acked-by: Sekhar Nori <nsekhar@ti.com> # DaVinci Acked-by: Christoffer Dall <christoffer.dall@linaro.org> # kvm/hyp Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com> # PXA3xx Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> # Xen Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> # ARMv7M Tested-by: Simon Horman <horms+renesas@verge.net.au> # Shmobile Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-06-30 09:29:12 -06:00
ret lr @ return to head.S:__ret
.align 2
__v7_setup_stack_ptr:
.word PHYS_RELATIVE(__v7_setup_stack, .)
ENDPROC(__v7_setup)
.bss
.align 2
__v7_setup_stack:
.space 4 * 7 @ 7 registers
__INITDATA
.weak cpu_v7_bugs_init
@ define struct processor (see <asm/proc-fns.h> and proc-macros.S)
define_processor_functions v7, dabort=v7_early_abort, pabort=v7_pabort, suspend=1, bugs=cpu_v7_bugs_init
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
@ generic v7 bpiall on context switch
globl_equ cpu_v7_bpiall_proc_init, cpu_v7_proc_init
globl_equ cpu_v7_bpiall_proc_fin, cpu_v7_proc_fin
globl_equ cpu_v7_bpiall_reset, cpu_v7_reset
globl_equ cpu_v7_bpiall_do_idle, cpu_v7_do_idle
globl_equ cpu_v7_bpiall_dcache_clean_area, cpu_v7_dcache_clean_area
globl_equ cpu_v7_bpiall_set_pte_ext, cpu_v7_set_pte_ext
globl_equ cpu_v7_bpiall_suspend_size, cpu_v7_suspend_size
#ifdef CONFIG_ARM_CPU_SUSPEND
globl_equ cpu_v7_bpiall_do_suspend, cpu_v7_do_suspend
globl_equ cpu_v7_bpiall_do_resume, cpu_v7_do_resume
#endif
define_processor_functions v7_bpiall, dabort=v7_early_abort, pabort=v7_pabort, suspend=1, bugs=cpu_v7_bugs_init
#define HARDENED_BPIALL_PROCESSOR_FUNCTIONS v7_bpiall_processor_functions
#else
#define HARDENED_BPIALL_PROCESSOR_FUNCTIONS v7_processor_functions
#endif
#ifndef CONFIG_ARM_LPAE
@ Cortex-A8 - always needs bpiall switch_mm implementation
globl_equ cpu_ca8_proc_init, cpu_v7_proc_init
globl_equ cpu_ca8_proc_fin, cpu_v7_proc_fin
globl_equ cpu_ca8_reset, cpu_v7_reset
globl_equ cpu_ca8_do_idle, cpu_v7_do_idle
globl_equ cpu_ca8_dcache_clean_area, cpu_v7_dcache_clean_area
globl_equ cpu_ca8_set_pte_ext, cpu_v7_set_pte_ext
globl_equ cpu_ca8_switch_mm, cpu_v7_bpiall_switch_mm
globl_equ cpu_ca8_suspend_size, cpu_v7_suspend_size
#ifdef CONFIG_ARM_CPU_SUSPEND
globl_equ cpu_ca8_do_suspend, cpu_v7_do_suspend
globl_equ cpu_ca8_do_resume, cpu_v7_do_resume
#endif
define_processor_functions ca8, dabort=v7_early_abort, pabort=v7_pabort, suspend=1, bugs=cpu_v7_ca8_ibe
@ Cortex-A9 - needs more registers preserved across suspend/resume
@ and bpiall switch_mm for hardening
globl_equ cpu_ca9mp_proc_init, cpu_v7_proc_init
globl_equ cpu_ca9mp_proc_fin, cpu_v7_proc_fin
globl_equ cpu_ca9mp_reset, cpu_v7_reset
globl_equ cpu_ca9mp_do_idle, cpu_v7_do_idle
globl_equ cpu_ca9mp_dcache_clean_area, cpu_v7_dcache_clean_area
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
globl_equ cpu_ca9mp_switch_mm, cpu_v7_bpiall_switch_mm
#else
globl_equ cpu_ca9mp_switch_mm, cpu_v7_switch_mm
#endif
globl_equ cpu_ca9mp_set_pte_ext, cpu_v7_set_pte_ext
define_processor_functions ca9mp, dabort=v7_early_abort, pabort=v7_pabort, suspend=1, bugs=cpu_v7_bugs_init
#endif
@ Cortex-A15 - needs iciallu switch_mm for hardening
globl_equ cpu_ca15_proc_init, cpu_v7_proc_init
globl_equ cpu_ca15_proc_fin, cpu_v7_proc_fin
globl_equ cpu_ca15_reset, cpu_v7_reset
globl_equ cpu_ca15_do_idle, cpu_v7_do_idle
globl_equ cpu_ca15_dcache_clean_area, cpu_v7_dcache_clean_area
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
globl_equ cpu_ca15_switch_mm, cpu_v7_iciallu_switch_mm
#else
globl_equ cpu_ca15_switch_mm, cpu_v7_switch_mm
#endif
globl_equ cpu_ca15_set_pte_ext, cpu_v7_set_pte_ext
globl_equ cpu_ca15_suspend_size, cpu_v7_suspend_size
globl_equ cpu_ca15_do_suspend, cpu_v7_do_suspend
globl_equ cpu_ca15_do_resume, cpu_v7_do_resume
define_processor_functions ca15, dabort=v7_early_abort, pabort=v7_pabort, suspend=1, bugs=cpu_v7_ca15_ibe
#ifdef CONFIG_CPU_PJ4B
define_processor_functions pj4b, dabort=v7_early_abort, pabort=v7_pabort, suspend=1
#endif
.section ".rodata"
string cpu_arch_name, "armv7"
string cpu_elf_name, "v7"
.align
.section ".proc.info.init", #alloc
/*
* Standard v7 proc info content
*/
.macro __v7_proc name, initfunc, mm_mmuflags = 0, io_mmuflags = 0, hwcaps = 0, proc_fns = v7_processor_functions, cache_fns = v7_cache_fns
ALT_SMP(.long PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | \
PMD_SECT_AF | PMD_FLAGS_SMP | \mm_mmuflags)
ALT_UP(.long PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | \
PMD_SECT_AF | PMD_FLAGS_UP | \mm_mmuflags)
.long PMD_TYPE_SECT | PMD_SECT_AP_WRITE | \
PMD_SECT_AP_READ | PMD_SECT_AF | \io_mmuflags
initfn \initfunc, \name
.long cpu_arch_name
.long cpu_elf_name
.long HWCAP_SWP | HWCAP_HALF | HWCAP_THUMB | HWCAP_FAST_MULT | \
HWCAP_EDSP | HWCAP_TLS | \hwcaps
.long cpu_v7_name
.long \proc_fns
.long v7wbi_tlb_fns
.long v6_user_fns
.long \cache_fns
.endm
#ifndef CONFIG_ARM_LPAE
/*
* ARM Ltd. Cortex A5 processor.
*/
.type __v7_ca5mp_proc_info, #object
__v7_ca5mp_proc_info:
.long 0x410fc050
.long 0xff0ffff0
__v7_proc __v7_ca5mp_proc_info, __v7_ca5mp_setup
.size __v7_ca5mp_proc_info, . - __v7_ca5mp_proc_info
/*
* ARM Ltd. Cortex A9 processor.
*/
.type __v7_ca9mp_proc_info, #object
__v7_ca9mp_proc_info:
.long 0x410fc090
.long 0xff0ffff0
__v7_proc __v7_ca9mp_proc_info, __v7_ca9mp_setup, proc_fns = ca9mp_processor_functions
.size __v7_ca9mp_proc_info, . - __v7_ca9mp_proc_info
/*
* ARM Ltd. Cortex A8 processor.
*/
.type __v7_ca8_proc_info, #object
__v7_ca8_proc_info:
.long 0x410fc080
.long 0xff0ffff0
__v7_proc __v7_ca8_proc_info, __v7_setup, proc_fns = ca8_processor_functions
.size __v7_ca8_proc_info, . - __v7_ca8_proc_info
#endif /* CONFIG_ARM_LPAE */
/*
* Marvell PJ4B processor.
*/
#ifdef CONFIG_CPU_PJ4B
.type __v7_pj4b_proc_info, #object
__v7_pj4b_proc_info:
.long 0x560f5800
.long 0xff0fff00
__v7_proc __v7_pj4b_proc_info, __v7_pj4b_setup, proc_fns = pj4b_processor_functions
.size __v7_pj4b_proc_info, . - __v7_pj4b_proc_info
#endif
/*
* ARM Ltd. Cortex R7 processor.
*/
.type __v7_cr7mp_proc_info, #object
__v7_cr7mp_proc_info:
.long 0x410fc170
.long 0xff0ffff0
__v7_proc __v7_cr7mp_proc_info, __v7_cr7mp_setup
.size __v7_cr7mp_proc_info, . - __v7_cr7mp_proc_info
/*
* ARM Ltd. Cortex R8 processor.
*/
.type __v7_cr8mp_proc_info, #object
__v7_cr8mp_proc_info:
.long 0x410fc180
.long 0xff0ffff0
__v7_proc __v7_cr8mp_proc_info, __v7_cr8mp_setup
.size __v7_cr8mp_proc_info, . - __v7_cr8mp_proc_info
/*
* ARM Ltd. Cortex A7 processor.
*/
.type __v7_ca7mp_proc_info, #object
__v7_ca7mp_proc_info:
.long 0x410fc070
.long 0xff0ffff0
__v7_proc __v7_ca7mp_proc_info, __v7_ca7mp_setup
.size __v7_ca7mp_proc_info, . - __v7_ca7mp_proc_info
/*
* ARM Ltd. Cortex A12 processor.
*/
.type __v7_ca12mp_proc_info, #object
__v7_ca12mp_proc_info:
.long 0x410fc0d0
.long 0xff0ffff0
__v7_proc __v7_ca12mp_proc_info, __v7_ca12mp_setup, proc_fns = HARDENED_BPIALL_PROCESSOR_FUNCTIONS
.size __v7_ca12mp_proc_info, . - __v7_ca12mp_proc_info
/*
* ARM Ltd. Cortex A15 processor.
*/
.type __v7_ca15mp_proc_info, #object
__v7_ca15mp_proc_info:
.long 0x410fc0f0
.long 0xff0ffff0
__v7_proc __v7_ca15mp_proc_info, __v7_ca15mp_setup, proc_fns = ca15_processor_functions
.size __v7_ca15mp_proc_info, . - __v7_ca15mp_proc_info
/*
* Broadcom Corporation Brahma-B15 processor.
*/
.type __v7_b15mp_proc_info, #object
__v7_b15mp_proc_info:
.long 0x420f00f0
.long 0xff0ffff0
__v7_proc __v7_b15mp_proc_info, __v7_b15mp_setup, proc_fns = ca15_processor_functions, cache_fns = b15_cache_fns
.size __v7_b15mp_proc_info, . - __v7_b15mp_proc_info
/*
* ARM Ltd. Cortex A17 processor.
*/
.type __v7_ca17mp_proc_info, #object
__v7_ca17mp_proc_info:
.long 0x410fc0e0
.long 0xff0ffff0
__v7_proc __v7_ca17mp_proc_info, __v7_ca17mp_setup, proc_fns = HARDENED_BPIALL_PROCESSOR_FUNCTIONS
.size __v7_ca17mp_proc_info, . - __v7_ca17mp_proc_info
/* ARM Ltd. Cortex A73 processor */
.type __v7_ca73_proc_info, #object
__v7_ca73_proc_info:
.long 0x410fd090
.long 0xff0ffff0
__v7_proc __v7_ca73_proc_info, __v7_setup, proc_fns = HARDENED_BPIALL_PROCESSOR_FUNCTIONS
.size __v7_ca73_proc_info, . - __v7_ca73_proc_info
/* ARM Ltd. Cortex A75 processor */
.type __v7_ca75_proc_info, #object
__v7_ca75_proc_info:
.long 0x410fd0a0
.long 0xff0ffff0
__v7_proc __v7_ca75_proc_info, __v7_setup, proc_fns = HARDENED_BPIALL_PROCESSOR_FUNCTIONS
.size __v7_ca75_proc_info, . - __v7_ca75_proc_info
/*
* Qualcomm Inc. Krait processors.
*/
.type __krait_proc_info, #object
__krait_proc_info:
.long 0x510f0400 @ Required ID value
.long 0xff0ffc00 @ Mask for ID
/*
* Some Krait processors don't indicate support for SDIV and UDIV
* instructions in the ARM instruction set, even though they actually
* do support them. They also don't indicate support for fused multiply
* instructions even though they actually do support them.
*/
__v7_proc __krait_proc_info, __v7_setup, hwcaps = HWCAP_IDIV | HWCAP_VFPv4
.size __krait_proc_info, . - __krait_proc_info
/*
* Match any ARMv7 processor core.
*/
.type __v7_proc_info, #object
__v7_proc_info:
.long 0x000f0000 @ Required ID value
.long 0x000f0000 @ Mask for ID
__v7_proc __v7_proc_info, __v7_setup
.size __v7_proc_info, . - __v7_proc_info