nopenpilot/selfdrive/car/__init__.py

133 lines
4.9 KiB
Python

# functions common among cars
from cereal import car
from common.numpy_fast import clip
# kg of standard extra cargo to count for drive, gas, etc...
STD_CARGO_KG = 136.
def gen_empty_fingerprint():
return {i: {} for i in range(0, 4)}
# FIXME: hardcoding honda civic 2016 touring params so they can be used to
# scale unknown params for other cars
class CivicParams:
MASS = 1326. + STD_CARGO_KG
WHEELBASE = 2.70
CENTER_TO_FRONT = WHEELBASE * 0.4
CENTER_TO_REAR = WHEELBASE - CENTER_TO_FRONT
ROTATIONAL_INERTIA = 2500
TIRE_STIFFNESS_FRONT = 192150
TIRE_STIFFNESS_REAR = 202500
# TODO: get actual value, for now starting with reasonable value for
# civic and scaling by mass and wheelbase
def scale_rot_inertia(mass, wheelbase):
return CivicParams.ROTATIONAL_INERTIA * mass * wheelbase ** 2 / (CivicParams.MASS * CivicParams.WHEELBASE ** 2)
# TODO: start from empirically derived lateral slip stiffness for the civic and scale by
# mass and CG position, so all cars will have approximately similar dyn behaviors
def scale_tire_stiffness(mass, wheelbase, center_to_front, tire_stiffness_factor=1.0):
center_to_rear = wheelbase - center_to_front
tire_stiffness_front = (CivicParams.TIRE_STIFFNESS_FRONT * tire_stiffness_factor) * mass / CivicParams.MASS * \
(center_to_rear / wheelbase) / (CivicParams.CENTER_TO_REAR / CivicParams.WHEELBASE)
tire_stiffness_rear = (CivicParams.TIRE_STIFFNESS_REAR * tire_stiffness_factor) * mass / CivicParams.MASS * \
(center_to_front / wheelbase) / (CivicParams.CENTER_TO_FRONT / CivicParams.WHEELBASE)
return tire_stiffness_front, tire_stiffness_rear
def dbc_dict(pt_dbc, radar_dbc, chassis_dbc=None, body_dbc=None):
return {'pt': pt_dbc, 'radar': radar_dbc, 'chassis': chassis_dbc, 'body': body_dbc}
def apply_std_steer_torque_limits(apply_torque, apply_torque_last, driver_torque, LIMITS):
# limits due to driver torque
driver_max_torque = LIMITS.STEER_MAX + (LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
driver_min_torque = -LIMITS.STEER_MAX + (-LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
max_steer_allowed = max(min(LIMITS.STEER_MAX, driver_max_torque), 0)
min_steer_allowed = min(max(-LIMITS.STEER_MAX, driver_min_torque), 0)
apply_torque = clip(apply_torque, min_steer_allowed, max_steer_allowed)
# slow rate if steer torque increases in magnitude
if apply_torque_last > 0:
apply_torque = clip(apply_torque, max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP),
apply_torque_last + LIMITS.STEER_DELTA_UP)
else:
apply_torque = clip(apply_torque, apply_torque_last - LIMITS.STEER_DELTA_UP,
min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP))
return int(round(float(apply_torque)))
def apply_toyota_steer_torque_limits(apply_torque, apply_torque_last, motor_torque, LIMITS):
# limits due to comparison of commanded torque VS motor reported torque
max_lim = min(max(motor_torque + LIMITS.STEER_ERROR_MAX, LIMITS.STEER_ERROR_MAX), LIMITS.STEER_MAX)
min_lim = max(min(motor_torque - LIMITS.STEER_ERROR_MAX, -LIMITS.STEER_ERROR_MAX), -LIMITS.STEER_MAX)
apply_torque = clip(apply_torque, min_lim, max_lim)
# slow rate if steer torque increases in magnitude
if apply_torque_last > 0:
apply_torque = clip(apply_torque,
max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP),
apply_torque_last + LIMITS.STEER_DELTA_UP)
else:
apply_torque = clip(apply_torque,
apply_torque_last - LIMITS.STEER_DELTA_UP,
min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP))
return int(round(float(apply_torque)))
def crc8_pedal(data):
crc = 0xFF # standard init value
poly = 0xD5 # standard crc8: x8+x7+x6+x4+x2+1
size = len(data)
for i in range(size - 1, -1, -1):
crc ^= data[i]
for _ in range(8):
if ((crc & 0x80) != 0):
crc = ((crc << 1) ^ poly) & 0xFF
else:
crc <<= 1
return crc
def create_gas_interceptor_command(packer, gas_amount, idx):
# Common gas pedal msg generator
enable = gas_amount > 0.001
values = {
"ENABLE": enable,
"COUNTER_PEDAL": idx & 0xF,
}
if enable:
values["GAS_COMMAND"] = gas_amount * 255.
values["GAS_COMMAND2"] = gas_amount * 255.
dat = packer.make_can_msg("GAS_COMMAND", 0, values)[2]
checksum = crc8_pedal(dat[:-1])
values["CHECKSUM_PEDAL"] = checksum
return packer.make_can_msg("GAS_COMMAND", 0, values)
def make_can_msg(addr, dat, bus):
return [addr, 0, dat, bus]
def get_safety_config(safety_model, safety_param = None):
ret = car.CarParams.SafetyConfig.new_message()
ret.safetyModel = safety_model
if safety_param is not None:
ret.safetyParam = safety_param
return ret