nopenpilot/selfdrive/modeld/modeld.cc

212 lines
8.0 KiB
C++

#include <cstdio>
#include <cstdlib>
#include <mutex>
#include <cmath>
#include <eigen3/Eigen/Dense>
#include "cereal/messaging/messaging.h"
#include "cereal/visionipc/visionipc_client.h"
#include "selfdrive/common/clutil.h"
#include "selfdrive/common/params.h"
#include "selfdrive/common/swaglog.h"
#include "selfdrive/common/util.h"
#include "selfdrive/hardware/hw.h"
#include "selfdrive/modeld/models/driving.h"
ExitHandler do_exit;
mat3 update_calibration(Eigen::Matrix<float, 3, 4> &extrinsics, bool wide_camera, bool bigmodel_frame) {
/*
import numpy as np
from common.transformations.model import medmodel_frame_from_road_frame
medmodel_frame_from_ground = medmodel_frame_from_road_frame[:, (0, 1, 3)]
ground_from_medmodel_frame = np.linalg.inv(medmodel_frame_from_ground)
*/
static const auto ground_from_medmodel_frame = (Eigen::Matrix<float, 3, 3>() <<
0.00000000e+00, 0.00000000e+00, 1.00000000e+00,
-1.09890110e-03, 0.00000000e+00, 2.81318681e-01,
-1.84808520e-20, 9.00738606e-04, -4.28751576e-02).finished();
static const auto ground_from_sbigmodel_frame = (Eigen::Matrix<float, 3, 3>() <<
0.00000000e+00, 7.31372216e-19, 1.00000000e+00,
-2.19780220e-03, 4.11497335e-19, 5.62637363e-01,
-5.46146580e-20, 1.80147721e-03, -2.73464241e-01).finished();
const auto cam_intrinsics = Eigen::Matrix<float, 3, 3, Eigen::RowMajor>(wide_camera ? ecam_intrinsic_matrix.v : fcam_intrinsic_matrix.v);
static const mat3 yuv_transform = get_model_yuv_transform();
auto ground_from_model_frame = bigmodel_frame ? ground_from_sbigmodel_frame : ground_from_medmodel_frame;
auto camera_frame_from_road_frame = cam_intrinsics * extrinsics;
Eigen::Matrix<float, 3, 3> camera_frame_from_ground;
camera_frame_from_ground.col(0) = camera_frame_from_road_frame.col(0);
camera_frame_from_ground.col(1) = camera_frame_from_road_frame.col(1);
camera_frame_from_ground.col(2) = camera_frame_from_road_frame.col(3);
auto warp_matrix = camera_frame_from_ground * ground_from_model_frame;
mat3 transform = {};
for (int i=0; i<3*3; i++) {
transform.v[i] = warp_matrix(i / 3, i % 3);
}
return matmul3(yuv_transform, transform);
}
static uint64_t get_ts(const VisionIpcBufExtra &extra) {
return Hardware::TICI() ? extra.timestamp_sof : extra.timestamp_eof;
}
void run_model(ModelState &model, VisionIpcClient &vipc_client_main, VisionIpcClient &vipc_client_extra, bool main_wide_camera, bool use_extra_client) {
// messaging
PubMaster pm({"modelV2", "cameraOdometry"});
SubMaster sm({"lateralPlan", "roadCameraState", "liveCalibration"});
// setup filter to track dropped frames
FirstOrderFilter frame_dropped_filter(0., 10., 1. / MODEL_FREQ);
uint32_t frame_id = 0, last_vipc_frame_id = 0;
double last = 0;
uint32_t run_count = 0;
mat3 model_transform_main = {};
mat3 model_transform_extra = {};
bool live_calib_seen = false;
VisionBuf *buf_main = nullptr;
VisionBuf *buf_extra = nullptr;
VisionIpcBufExtra meta_main = {0};
VisionIpcBufExtra meta_extra = {0};
while (!do_exit) {
// Keep receiving frames until we are at least 1 frame ahead of previous extra frame
while (get_ts(meta_main) < get_ts(meta_extra) + 25000000ULL) {
buf_main = vipc_client_main.recv(&meta_main);
if (buf_main == nullptr) break;
}
if (buf_main == nullptr) {
LOGE("vipc_client_main no frame");
continue;
}
if (use_extra_client) {
// Keep receiving extra frames until frame id matches main camera
do {
buf_extra = vipc_client_extra.recv(&meta_extra);
} while (buf_extra != nullptr && get_ts(meta_main) > get_ts(meta_extra) + 25000000ULL);
if (buf_extra == nullptr) {
LOGE("vipc_client_extra no frame");
continue;
}
if (std::abs((int64_t)meta_main.timestamp_sof - (int64_t)meta_extra.timestamp_sof) > 10000000ULL) {
LOGE("frames out of sync! main: %d (%.5f), extra: %d (%.5f)",
meta_main.frame_id, double(meta_main.timestamp_sof) / 1e9,
meta_extra.frame_id, double(meta_extra.timestamp_sof) / 1e9);
}
} else {
// Use single camera
buf_extra = buf_main;
meta_extra = meta_main;
}
// TODO: path planner timeout?
sm.update(0);
int desire = ((int)sm["lateralPlan"].getLateralPlan().getDesire());
frame_id = sm["roadCameraState"].getRoadCameraState().getFrameId();
if (sm.updated("liveCalibration")) {
auto extrinsic_matrix = sm["liveCalibration"].getLiveCalibration().getExtrinsicMatrix();
Eigen::Matrix<float, 3, 4> extrinsic_matrix_eigen;
for (int i = 0; i < 4*3; i++) {
extrinsic_matrix_eigen(i / 4, i % 4) = extrinsic_matrix[i];
}
model_transform_main = update_calibration(extrinsic_matrix_eigen, main_wide_camera, false);
model_transform_extra = update_calibration(extrinsic_matrix_eigen, Hardware::TICI(), true);
live_calib_seen = true;
}
float vec_desire[DESIRE_LEN] = {0};
if (desire >= 0 && desire < DESIRE_LEN) {
vec_desire[desire] = 1.0;
}
double mt1 = millis_since_boot();
ModelOutput *model_output = model_eval_frame(&model, buf_main, buf_extra, model_transform_main, model_transform_extra, vec_desire);
double mt2 = millis_since_boot();
float model_execution_time = (mt2 - mt1) / 1000.0;
// tracked dropped frames
uint32_t vipc_dropped_frames = meta_main.frame_id - last_vipc_frame_id - 1;
float frames_dropped = frame_dropped_filter.update((float)std::min(vipc_dropped_frames, 10U));
if (run_count < 10) { // let frame drops warm up
frame_dropped_filter.reset(0);
frames_dropped = 0.;
}
run_count++;
float frame_drop_ratio = frames_dropped / (1 + frames_dropped);
model_publish(pm, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio, *model_output, meta_main.timestamp_eof, model_execution_time,
kj::ArrayPtr<const float>(model.output.data(), model.output.size()), live_calib_seen);
posenet_publish(pm, meta_main.frame_id, vipc_dropped_frames, *model_output, meta_main.timestamp_eof, live_calib_seen);
//printf("model process: %.2fms, from last %.2fms, vipc_frame_id %u, frame_id, %u, frame_drop %.3f\n", mt2 - mt1, mt1 - last, extra.frame_id, frame_id, frame_drop_ratio);
last = mt1;
last_vipc_frame_id = meta_main.frame_id;
}
}
int main(int argc, char **argv) {
if (!Hardware::PC()) {
int ret;
ret = util::set_realtime_priority(54);
assert(ret == 0);
util::set_core_affinity({Hardware::EON() ? 2 : 7});
assert(ret == 0);
}
bool main_wide_camera = Hardware::TICI() ? Params().getBool("EnableWideCamera") : false;
bool use_extra_client = Hardware::TICI() && !main_wide_camera;
// cl init
cl_device_id device_id = cl_get_device_id(CL_DEVICE_TYPE_DEFAULT);
cl_context context = CL_CHECK_ERR(clCreateContext(NULL, 1, &device_id, NULL, NULL, &err));
// init the models
ModelState model;
model_init(&model, device_id, context);
LOGW("models loaded, modeld starting");
VisionIpcClient vipc_client_main = VisionIpcClient("camerad", main_wide_camera ? VISION_STREAM_WIDE_ROAD : VISION_STREAM_ROAD, true, device_id, context);
VisionIpcClient vipc_client_extra = VisionIpcClient("camerad", VISION_STREAM_WIDE_ROAD, false, device_id, context);
while (!do_exit && !vipc_client_main.connect(false)) {
util::sleep_for(100);
}
while (!do_exit && use_extra_client && !vipc_client_extra.connect(false)) {
util::sleep_for(100);
}
// run the models
// vipc_client.connected is false only when do_exit is true
if (!do_exit) {
const VisionBuf *b = &vipc_client_main.buffers[0];
LOGW("connected main cam with buffer size: %d (%d x %d)", b->len, b->width, b->height);
if (use_extra_client) {
const VisionBuf *wb = &vipc_client_extra.buffers[0];
LOGW("connected extra cam with buffer size: %d (%d x %d)", wb->len, wb->width, wb->height);
}
run_model(model, vipc_client_main, vipc_client_extra, main_wide_camera, use_extra_client);
}
model_free(&model);
CL_CHECK(clReleaseContext(context));
return 0;
}