nopenpilot/selfdrive/ui/ui.cc

339 lines
12 KiB
C++

#include "selfdrive/ui/ui.h"
#include <cassert>
#include <cmath>
#include <QtConcurrent>
#include "common/transformations/orientation.hpp"
#include "selfdrive/common/params.h"
#include "selfdrive/common/swaglog.h"
#include "selfdrive/common/util.h"
#include "selfdrive/common/watchdog.h"
#include "selfdrive/hardware/hw.h"
#define BACKLIGHT_DT 0.05
#define BACKLIGHT_TS 10.00
#define BACKLIGHT_OFFROAD 50
// Projects a point in car to space to the corresponding point in full frame
// image space.
static bool calib_frame_to_full_frame(const UIState *s, float in_x, float in_y, float in_z, QPointF *out) {
const float margin = 500.0f;
const QRectF clip_region{-margin, -margin, s->fb_w + 2 * margin, s->fb_h + 2 * margin};
const vec3 pt = (vec3){{in_x, in_y, in_z}};
const vec3 Ep = matvecmul3(s->scene.view_from_calib, pt);
const vec3 KEp = matvecmul3(s->wide_camera ? ecam_intrinsic_matrix : fcam_intrinsic_matrix, Ep);
// Project.
QPointF point = s->car_space_transform.map(QPointF{KEp.v[0] / KEp.v[2], KEp.v[1] / KEp.v[2]});
if (clip_region.contains(point)) {
*out = point;
return true;
}
return false;
}
static int get_path_length_idx(const cereal::ModelDataV2::XYZTData::Reader &line, const float path_height) {
const auto line_x = line.getX();
int max_idx = 0;
for (int i = 1; i < TRAJECTORY_SIZE && line_x[i] <= path_height; ++i) {
max_idx = i;
}
return max_idx;
}
static void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, const cereal::ModelDataV2::XYZTData::Reader &line) {
for (int i = 0; i < 2; ++i) {
auto lead_data = (i == 0) ? radar_state.getLeadOne() : radar_state.getLeadTwo();
if (lead_data.getStatus()) {
float z = line.getZ()[get_path_length_idx(line, lead_data.getDRel())];
calib_frame_to_full_frame(s, lead_data.getDRel(), -lead_data.getYRel(), z + 1.22, &s->scene.lead_vertices[i]);
}
}
}
static void update_line_data(const UIState *s, const cereal::ModelDataV2::XYZTData::Reader &line,
float y_off, float z_off, line_vertices_data *pvd, int max_idx) {
const auto line_x = line.getX(), line_y = line.getY(), line_z = line.getZ();
QPointF *v = &pvd->v[0];
for (int i = 0; i <= max_idx; i++) {
v += calib_frame_to_full_frame(s, line_x[i], line_y[i] - y_off, line_z[i] + z_off, v);
}
for (int i = max_idx; i >= 0; i--) {
v += calib_frame_to_full_frame(s, line_x[i], line_y[i] + y_off, line_z[i] + z_off, v);
}
pvd->cnt = v - pvd->v;
assert(pvd->cnt <= std::size(pvd->v));
}
static void update_model(UIState *s, const cereal::ModelDataV2::Reader &model) {
UIScene &scene = s->scene;
auto model_position = model.getPosition();
float max_distance = std::clamp(model_position.getX()[TRAJECTORY_SIZE - 1],
MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE);
// update lane lines
const auto lane_lines = model.getLaneLines();
const auto lane_line_probs = model.getLaneLineProbs();
int max_idx = get_path_length_idx(lane_lines[0], max_distance);
for (int i = 0; i < std::size(scene.lane_line_vertices); i++) {
scene.lane_line_probs[i] = lane_line_probs[i];
update_line_data(s, lane_lines[i], 0.025 * scene.lane_line_probs[i], 0, &scene.lane_line_vertices[i], max_idx);
}
// update road edges
const auto road_edges = model.getRoadEdges();
const auto road_edge_stds = model.getRoadEdgeStds();
for (int i = 0; i < std::size(scene.road_edge_vertices); i++) {
scene.road_edge_stds[i] = road_edge_stds[i];
update_line_data(s, road_edges[i], 0.025, 0, &scene.road_edge_vertices[i], max_idx);
}
// update path
auto lead_one = (*s->sm)["radarState"].getRadarState().getLeadOne();
if (lead_one.getStatus()) {
const float lead_d = lead_one.getDRel() * 2.;
max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance);
}
max_idx = get_path_length_idx(model_position, max_distance);
update_line_data(s, model_position, 0.5, 1.22, &scene.track_vertices, max_idx);
}
static void update_sockets(UIState *s) {
s->sm->update(0);
}
static void update_state(UIState *s) {
SubMaster &sm = *(s->sm);
UIScene &scene = s->scene;
if (sm.updated("liveCalibration")) {
auto rpy_list = sm["liveCalibration"].getLiveCalibration().getRpyCalib();
Eigen::Vector3d rpy;
rpy << rpy_list[0], rpy_list[1], rpy_list[2];
Eigen::Matrix3d device_from_calib = euler2rot(rpy);
Eigen::Matrix3d view_from_device;
view_from_device << 0,1,0,
0,0,1,
1,0,0;
Eigen::Matrix3d view_from_calib = view_from_device * device_from_calib;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
scene.view_from_calib.v[i*3 + j] = view_from_calib(i,j);
}
}
}
if (s->worldObjectsVisible()) {
if (sm.updated("modelV2")) {
update_model(s, sm["modelV2"].getModelV2());
}
if (sm.updated("radarState") && sm.rcv_frame("modelV2") > s->scene.started_frame) {
update_leads(s, sm["radarState"].getRadarState(), sm["modelV2"].getModelV2().getPosition());
}
}
if (sm.updated("pandaStates")) {
auto pandaStates = sm["pandaStates"].getPandaStates();
if (pandaStates.size() > 0) {
scene.pandaType = pandaStates[0].getPandaType();
if (scene.pandaType != cereal::PandaState::PandaType::UNKNOWN) {
scene.ignition = false;
for (const auto& pandaState : pandaStates) {
scene.ignition |= pandaState.getIgnitionLine() || pandaState.getIgnitionCan();
}
}
}
} else if ((s->sm->frame - s->sm->rcv_frame("pandaStates")) > 5*UI_FREQ) {
scene.pandaType = cereal::PandaState::PandaType::UNKNOWN;
}
if (sm.updated("carParams")) {
scene.longitudinal_control = sm["carParams"].getCarParams().getOpenpilotLongitudinalControl();
}
if (!scene.started && sm.updated("sensorEvents")) {
for (auto sensor : sm["sensorEvents"].getSensorEvents()) {
if (sensor.which() == cereal::SensorEventData::ACCELERATION) {
auto accel = sensor.getAcceleration().getV();
if (accel.totalSize().wordCount) { // TODO: sometimes empty lists are received. Figure out why
scene.accel_sensor = accel[2];
}
} else if (sensor.which() == cereal::SensorEventData::GYRO_UNCALIBRATED) {
auto gyro = sensor.getGyroUncalibrated().getV();
if (gyro.totalSize().wordCount) {
scene.gyro_sensor = gyro[1];
}
}
}
}
if (!Hardware::TICI() && sm.updated("roadCameraState")) {
auto camera_state = sm["roadCameraState"].getRoadCameraState();
float max_lines = Hardware::EON() ? 5408 : 1904;
float max_gain = Hardware::EON() ? 1.0: 10.0;
float max_ev = max_lines * max_gain;
float ev = camera_state.getGain() * float(camera_state.getIntegLines());
scene.light_sensor = std::clamp<float>(1.0 - (ev / max_ev), 0.0, 1.0);
} else if (Hardware::TICI() && sm.updated("wideRoadCameraState")) {
auto camera_state = sm["wideRoadCameraState"].getWideRoadCameraState();
float max_lines = 1904;
float max_gain = 10.0;
float max_ev = max_lines * max_gain / 6;
float ev = camera_state.getGain() * float(camera_state.getIntegLines());
scene.light_sensor = std::clamp<float>(1.0 - (ev / max_ev), 0.0, 1.0);
}
scene.started = sm["deviceState"].getDeviceState().getStarted() && scene.ignition;
}
void ui_update_params(UIState *s) {
s->scene.is_metric = Params().getBool("IsMetric");
}
void UIState::updateStatus() {
if (scene.started && sm->updated("controlsState")) {
auto controls_state = (*sm)["controlsState"].getControlsState();
auto alert_status = controls_state.getAlertStatus();
if (alert_status == cereal::ControlsState::AlertStatus::USER_PROMPT) {
status = STATUS_WARNING;
} else if (alert_status == cereal::ControlsState::AlertStatus::CRITICAL) {
status = STATUS_ALERT;
} else {
status = controls_state.getEnabled() ? STATUS_ENGAGED : STATUS_DISENGAGED;
}
}
// Handle onroad/offroad transition
if (scene.started != started_prev || sm->frame == 1) {
if (scene.started) {
status = STATUS_DISENGAGED;
scene.started_frame = sm->frame;
scene.end_to_end = Params().getBool("EndToEndToggle");
wide_camera = Hardware::TICI() ? Params().getBool("EnableWideCamera") : false;
}
started_prev = scene.started;
emit offroadTransition(!scene.started);
}
}
UIState::UIState(QObject *parent) : QObject(parent) {
sm = std::make_unique<SubMaster, const std::initializer_list<const char *>>({
"modelV2", "controlsState", "liveCalibration", "radarState", "deviceState", "roadCameraState",
"pandaStates", "carParams", "driverMonitoringState", "sensorEvents", "carState", "liveLocationKalman",
"wideRoadCameraState",
});
Params params;
wide_camera = Hardware::TICI() ? params.getBool("EnableWideCamera") : false;
prime_type = std::atoi(params.get("PrimeType").c_str());
// update timer
timer = new QTimer(this);
QObject::connect(timer, &QTimer::timeout, this, &UIState::update);
timer->start(1000 / UI_FREQ);
}
void UIState::update() {
update_sockets(this);
update_state(this);
updateStatus();
if (sm->frame % UI_FREQ == 0) {
watchdog_kick();
}
emit uiUpdate(*this);
}
Device::Device(QObject *parent) : brightness_filter(BACKLIGHT_OFFROAD, BACKLIGHT_TS, BACKLIGHT_DT), QObject(parent) {
setAwake(true);
resetInteractiveTimout();
QObject::connect(uiState(), &UIState::uiUpdate, this, &Device::update);
}
void Device::update(const UIState &s) {
updateBrightness(s);
updateWakefulness(s);
// TODO: remove from UIState and use signals
uiState()->awake = awake;
}
void Device::setAwake(bool on) {
if (on != awake) {
awake = on;
Hardware::set_display_power(awake);
LOGD("setting display power %d", awake);
emit displayPowerChanged(awake);
}
}
void Device::resetInteractiveTimout() {
interactive_timeout = (ignition_on ? 10 : 30) * UI_FREQ;
}
void Device::updateBrightness(const UIState &s) {
float clipped_brightness = BACKLIGHT_OFFROAD;
if (s.scene.started) {
// Scale to 0% to 100%
clipped_brightness = 100.0 * s.scene.light_sensor;
// CIE 1931 - https://www.photonstophotos.net/GeneralTopics/Exposure/Psychometric_Lightness_and_Gamma.htm
if (clipped_brightness <= 8) {
clipped_brightness = (clipped_brightness / 903.3);
} else {
clipped_brightness = std::pow((clipped_brightness + 16.0) / 116.0, 3.0);
}
// Scale back to 10% to 100%
clipped_brightness = std::clamp(100.0f * clipped_brightness, 10.0f, 100.0f);
}
int brightness = brightness_filter.update(clipped_brightness);
if (!awake) {
brightness = 0;
}
if (brightness != last_brightness) {
if (!brightness_future.isRunning()) {
brightness_future = QtConcurrent::run(Hardware::set_brightness, brightness);
last_brightness = brightness;
}
}
}
bool Device::motionTriggered(const UIState &s) {
static float accel_prev = 0;
static float gyro_prev = 0;
bool accel_trigger = abs(s.scene.accel_sensor - accel_prev) > 0.2;
bool gyro_trigger = abs(s.scene.gyro_sensor - gyro_prev) > 0.15;
gyro_prev = s.scene.gyro_sensor;
accel_prev = (accel_prev * (accel_samples - 1) + s.scene.accel_sensor) / accel_samples;
return (!awake && accel_trigger && gyro_trigger);
}
void Device::updateWakefulness(const UIState &s) {
bool ignition_just_turned_off = !s.scene.ignition && ignition_on;
ignition_on = s.scene.ignition;
if (ignition_just_turned_off || motionTriggered(s)) {
resetInteractiveTimout();
} else if (interactive_timeout > 0 && --interactive_timeout == 0) {
emit interactiveTimout();
}
setAwake(s.scene.ignition || interactive_timeout > 0);
}
UIState *uiState() {
static UIState ui_state;
return &ui_state;
}