nopenpilot/selfdrive/controls/lib/lateral_planner.py

125 lines
5.1 KiB
Python

import numpy as np
from common.realtime import sec_since_boot, DT_MDL
from common.numpy_fast import interp
from selfdrive.swaglog import cloudlog
from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
from selfdrive.controls.lib.drive_helpers import CONTROL_N, MPC_COST_LAT, LAT_MPC_N, CAR_ROTATION_RADIUS
from selfdrive.controls.lib.lane_planner import LanePlanner, TRAJECTORY_SIZE
from selfdrive.controls.lib.desire_helper import DesireHelper
import cereal.messaging as messaging
from cereal import log
class LateralPlanner:
def __init__(self, CP, use_lanelines=True, wide_camera=False):
self.use_lanelines = use_lanelines
self.LP = LanePlanner(wide_camera)
self.DH = DesireHelper()
self.last_cloudlog_t = 0
self.steer_rate_cost = CP.steerRateCost
self.solution_invalid_cnt = 0
self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.path_xyz_stds = np.ones((TRAJECTORY_SIZE, 3))
self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
self.t_idxs = np.arange(TRAJECTORY_SIZE)
self.y_pts = np.zeros(TRAJECTORY_SIZE)
self.lat_mpc = LateralMpc()
self.reset_mpc(np.zeros(4))
def reset_mpc(self, x0=np.zeros(4)):
self.x0 = x0
self.lat_mpc.reset(x0=self.x0)
def update(self, sm):
v_ego = sm['carState'].vEgo
measured_curvature = sm['controlsState'].curvature
# Parse model predictions
md = sm['modelV2']
self.LP.parse_model(md)
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
self.t_idxs = np.array(md.position.t)
self.plan_yaw = list(md.orientation.z)
if len(md.position.xStd) == TRAJECTORY_SIZE:
self.path_xyz_stds = np.column_stack([md.position.xStd, md.position.yStd, md.position.zStd])
# Lane change logic
lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
self.DH.update(sm['carState'], sm['controlsState'].active, lane_change_prob)
# Turn off lanes during lane change
if self.DH.desire == log.LateralPlan.Desire.laneChangeRight or self.DH.desire == log.LateralPlan.Desire.laneChangeLeft:
self.LP.lll_prob *= self.DH.lane_change_ll_prob
self.LP.rll_prob *= self.DH.lane_change_ll_prob
# Calculate final driving path and set MPC costs
if self.use_lanelines:
d_path_xyz = self.LP.get_d_path(v_ego, self.t_idxs, self.path_xyz)
self.lat_mpc.set_weights(MPC_COST_LAT.PATH, MPC_COST_LAT.HEADING, self.steer_rate_cost)
else:
d_path_xyz = self.path_xyz
path_cost = np.clip(abs(self.path_xyz[0, 1] / self.path_xyz_stds[0, 1]), 0.5, 1.5) * MPC_COST_LAT.PATH
# Heading cost is useful at low speed, otherwise end of plan can be off-heading
heading_cost = interp(v_ego, [5.0, 10.0], [MPC_COST_LAT.HEADING, 0.0])
self.lat_mpc.set_weights(path_cost, heading_cost, self.steer_rate_cost)
y_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(d_path_xyz, axis=1), d_path_xyz[:, 1])
heading_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(self.path_xyz, axis=1), self.plan_yaw)
self.y_pts = y_pts
assert len(y_pts) == LAT_MPC_N + 1
assert len(heading_pts) == LAT_MPC_N + 1
# self.x0[4] = v_ego
p = np.array([v_ego, CAR_ROTATION_RADIUS])
self.lat_mpc.run(self.x0,
p,
y_pts,
heading_pts)
# init state for next
self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3])
# Check for infeasible MPC solution
mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
t = sec_since_boot()
if mpc_nans or self.lat_mpc.solution_status != 0:
self.reset_mpc()
self.x0[3] = measured_curvature
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Lateral mpc - nan: True")
if self.lat_mpc.cost > 20000. or mpc_nans:
self.solution_invalid_cnt += 1
else:
self.solution_invalid_cnt = 0
def publish(self, sm, pm):
plan_solution_valid = self.solution_invalid_cnt < 2
plan_send = messaging.new_message('lateralPlan')
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'modelV2'])
lateralPlan = plan_send.lateralPlan
lateralPlan.frameId = sm['modelV2'].frameId
lateralPlan.laneWidth = float(self.LP.lane_width)
lateralPlan.dPathPoints = self.y_pts.tolist()
lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
lateralPlan.curvatures = self.lat_mpc.x_sol[0:CONTROL_N, 3].tolist()
lateralPlan.curvatureRates = [float(x) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
lateralPlan.lProb = float(self.LP.lll_prob)
lateralPlan.rProb = float(self.LP.rll_prob)
lateralPlan.dProb = float(self.LP.d_prob)
lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
lateralPlan.desire = self.DH.desire
lateralPlan.useLaneLines = self.use_lanelines
lateralPlan.laneChangeState = self.DH.lane_change_state
lateralPlan.laneChangeDirection = self.DH.lane_change_direction
pm.send('lateralPlan', plan_send)