nopenpilot/selfdrive/controls/lib/drive_helpers.py

118 lines
4.2 KiB
Python

import math
from cereal import car
from common.numpy_fast import clip, interp
from common.realtime import DT_MDL
from common.conversions import Conversions as CV
from selfdrive.modeld.constants import T_IDXS
# WARNING: this value was determined based on the model's training distribution,
# model predictions above this speed can be unpredictable
V_CRUISE_MAX = 145 # kph
V_CRUISE_MIN = 8 # kph
V_CRUISE_ENABLE_MIN = 40 # kph
LAT_MPC_N = 16
LON_MPC_N = 32
CONTROL_N = 17
CAR_ROTATION_RADIUS = 0.0
# this corresponds to 80deg/s and 20deg/s steering angle in a toyota corolla
MAX_CURVATURE_RATES = [0.03762194918267951, 0.003441203371932992]
MAX_CURVATURE_RATE_SPEEDS = [0, 35]
CRUISE_LONG_PRESS = 50
CRUISE_NEAREST_FUNC = {
car.CarState.ButtonEvent.Type.accelCruise: math.ceil,
car.CarState.ButtonEvent.Type.decelCruise: math.floor,
}
CRUISE_INTERVAL_SIGN = {
car.CarState.ButtonEvent.Type.accelCruise: +1,
car.CarState.ButtonEvent.Type.decelCruise: -1,
}
class MPC_COST_LAT:
PATH = 1.0
HEADING = 1.0
STEER_RATE = 1.0
def rate_limit(new_value, last_value, dw_step, up_step):
return clip(new_value, last_value + dw_step, last_value + up_step)
def get_steer_max(CP, v_ego):
return interp(v_ego, CP.steerMaxBP, CP.steerMaxV)
def update_v_cruise(v_cruise_kph, buttonEvents, button_timers, enabled, metric):
# handle button presses. TODO: this should be in state_control, but a decelCruise press
# would have the effect of both enabling and changing speed is checked after the state transition
if not enabled:
return v_cruise_kph
long_press = False
button_type = None
v_cruise_delta = 1 if metric else 1.6
for b in buttonEvents:
if b.type.raw in button_timers and not b.pressed:
if button_timers[b.type.raw] > CRUISE_LONG_PRESS:
return v_cruise_kph # end long press
button_type = b.type.raw
break
else:
for k in button_timers.keys():
if button_timers[k] and button_timers[k] % CRUISE_LONG_PRESS == 0:
button_type = k
long_press = True
break
if button_type:
v_cruise_delta = v_cruise_delta * (5 if long_press else 1)
if long_press and v_cruise_kph % v_cruise_delta != 0: # partial interval
v_cruise_kph = CRUISE_NEAREST_FUNC[button_type](v_cruise_kph / v_cruise_delta) * v_cruise_delta
else:
v_cruise_kph += v_cruise_delta * CRUISE_INTERVAL_SIGN[button_type]
v_cruise_kph = clip(round(v_cruise_kph, 1), V_CRUISE_MIN, V_CRUISE_MAX)
return v_cruise_kph
def initialize_v_cruise(v_ego, buttonEvents, v_cruise_last):
for b in buttonEvents:
# 250kph or above probably means we never had a set speed
if b.type == car.CarState.ButtonEvent.Type.accelCruise and v_cruise_last < 250:
return v_cruise_last
return int(round(clip(v_ego * CV.MS_TO_KPH, V_CRUISE_ENABLE_MIN, V_CRUISE_MAX)))
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates):
if len(psis) != CONTROL_N:
psis = [0.0 for i in range(CONTROL_N)]
curvatures = [0.0 for i in range(CONTROL_N)]
curvature_rates = [0.0 for i in range(CONTROL_N)]
# TODO this needs more thought, use .2s extra for now to estimate other delays
delay = CP.steerActuatorDelay + .2
current_curvature = curvatures[0]
psi = interp(delay, T_IDXS[:CONTROL_N], psis)
desired_curvature_rate = curvature_rates[0]
# MPC can plan to turn the wheel and turn back before t_delay. This means
# in high delay cases some corrections never even get commanded. So just use
# psi to calculate a simple linearization of desired curvature
curvature_diff_from_psi = psi / (max(v_ego, 1e-1) * delay) - current_curvature
desired_curvature = current_curvature + 2 * curvature_diff_from_psi
max_curvature_rate = interp(v_ego, MAX_CURVATURE_RATE_SPEEDS, MAX_CURVATURE_RATES)
safe_desired_curvature_rate = clip(desired_curvature_rate,
-max_curvature_rate,
max_curvature_rate)
safe_desired_curvature = clip(desired_curvature,
current_curvature - max_curvature_rate * DT_MDL,
current_curvature + max_curvature_rate * DT_MDL)
return safe_desired_curvature, safe_desired_curvature_rate