1
0
Fork 0
satnogs-network/network/base/scheduling.py

299 lines
11 KiB
Python
Raw Normal View History

import math
from datetime import timedelta
from django.conf import settings
from django.utils.timezone import now, make_aware, utc
from network.base.models import Satellite, Station, Tle, Transmitter, Observation
from network.base.perms import schedule_perms
import ephem
class ObservationOverlapError(Exception):
pass
def get_elevation(observer, satellite, date):
observer = observer.copy()
satellite = satellite.copy()
observer.date = date
satellite.compute(observer)
return float(format(math.degrees(satellite.alt), '.0f'))
def get_azimuth(observer, satellite, date):
observer = observer.copy()
satellite = satellite.copy()
observer.date = date
satellite.compute(observer)
return float(format(math.degrees(satellite.az), '.0f'))
def over_station_horizon(elevation, station):
return elevation > station.horizon
def over_min_duration(duration):
return duration > settings.OBSERVATION_DURATION_MIN
def max_elevation_in_window(observer, satellite, pass_tca, window_start, window_end):
# In this case this is an overlapped observation
# re-calculate elevation and start/end azimuth
if window_start > pass_tca:
# Observation window in the second half of the pass
# Thus highest elevation right at the beginning of the window
return get_elevation(observer, satellite, window_start)
elif window_end < pass_tca:
# Observation window in the first half of the pass
# Thus highest elevation right at the end of the window
return get_elevation(observer, satellite, window_end)
else:
return get_elevation(observer, satellite, pass_tca)
def resolve_overlaps(station, gs_data, start, end):
"""
This function checks for overlaps between all existing observations on `gs_data` and a
potential new observation with given `start` and `end` time.
Returns
- ([], True) if total overlap exists
- ([(start1, end1), (start2, end2)], True) if the overlap happens in the middle
of the new observation
- ([(start, end)], True) if the overlap happens at one end
of the new observation
- ([(start, end)], False) if no overlap exists
"""
overlapped = False
if gs_data:
for datum in gs_data:
if datum.start <= end and start <= datum.end:
overlapped = True
if datum.start <= start and datum.end >= end:
return ([], True)
if start < datum.start and end > datum.end:
# In case of splitting the window to two we
# check for overlaps for each generated window.
window1 = resolve_overlaps(station, gs_data,
start, datum.start - timedelta(seconds=30))
window2 = resolve_overlaps(station, gs_data,
datum.end + timedelta(seconds=30), end)
return (window1[0] + window2[0], True)
if datum.start <= start:
start = datum.end + timedelta(seconds=30)
if datum.end >= end:
end = datum.start - timedelta(seconds=30)
return ([(start, end)], overlapped)
def create_station_window(window_start, window_end, overlapped,
azr, azs, elevation,
tle):
return {'start': window_start.strftime("%Y-%m-%d %H:%M:%S.%f"),
'end': window_end.strftime("%Y-%m-%d %H:%M:%S.%f"),
'az_start': azr,
'az_end': azs,
'elev_max': elevation,
'tle0': tle.tle0,
'tle1': tle.tle1,
'tle2': tle.tle2,
'overlapped': overlapped}
def create_station_windows(station, existing_observations,
pass_params, observer, satellite, tle):
2018-12-15 16:32:24 -07:00
"""
This function takes a pre-calculated pass (described by pass_params) over a certain station
and a list of already scheduled observations, and calculates observation windows during which
the station is available to observe the pass.
Returns the list of all available observation windows
"""
station_windows = []
windows, windows_changed = resolve_overlaps(station, existing_observations,
pass_params['rise_time'],
pass_params['set_time'])
if len(windows) == 0:
# No non-overlapping windows found
return []
if windows_changed:
# Windows changed due to overlap, recalculate observation parameters
for window_start, window_end in windows:
elevation = max_elevation_in_window(observer, satellite,
pass_params['tca_time'],
window_start, window_end)
window_duration = (window_end - window_start).total_seconds()
if not (over_station_horizon(elevation, station) and
over_min_duration(window_duration)):
continue
# Add a window for a partial pass
station_windows.append(create_station_window(
window_start, window_end, True,
get_azimuth(observer, satellite, window_start),
get_azimuth(observer, satellite, window_end),
elevation,
tle
))
else:
# Add a window for a full pass
station_windows.append(create_station_window(
pass_params['rise_time'],
pass_params['set_time'],
False,
pass_params['rise_az'],
pass_params['set_az'],
pass_params['tca_alt'],
tle
))
return station_windows
def next_pass(observer, satellite):
tr, azr, tt, altt, ts, azs = observer.next_pass(satellite)
# Convert output of pyephems.next_pass into processible values
pass_start = make_aware(ephem.Date(tr).datetime(), utc)
pass_end = make_aware(ephem.Date(ts).datetime(), utc)
pass_tca = make_aware(ephem.Date(tt).datetime(), utc)
pass_azr = float(format(math.degrees(azr), '.0f'))
pass_azs = float(format(math.degrees(azs), '.0f'))
pass_elevation = float(format(math.degrees(altt), '.0f'))
if ephem.Date(tr).datetime() > ephem.Date(ts).datetime():
# set time before rise time (bug in pyephem)
# https://github.com/brandon-rhodes/pyephem/issues/105
# move observer time after the current pass end
time_start_new = pass_end + timedelta(minutes=1)
observer.date = time_start_new.strftime("%Y-%m-%d %H:%M:%S.%f")
return next_pass(observer, satellite)
return {'rise_time': pass_start,
'set_time': pass_end,
'tca_time': pass_tca,
'rise_az': pass_azr,
'set_az': pass_azs,
'tca_alt': pass_elevation}
def predict_available_observation_windows(station, min_horizon, satellite,
start_date, end_date, sat):
'''
Calculates available observation windows for a certain station and satellite during
the given time period.
Returns list of passes found and list of available observation windows
'''
passes_found = []
# Initialize pyephem Observer for propagation
observer = ephem.Observer()
observer.lon = str(station.lng)
observer.lat = str(station.lat)
observer.elevation = station.alt
observer.date = ephem.Date(start_date)
if min_horizon:
observer.horizon = str(min_horizon)
else:
observer.horizon = str(station.horizon)
satellite.compute(observer)
station_windows = []
while True:
try:
pass_params = next_pass(observer, satellite)
except ValueError:
break
# no match if the sat will not rise above the configured min horizon
if pass_params['rise_time'] >= end_date:
# start of next pass outside of window bounds
break
if pass_params['set_time'] > end_date:
# end of next pass outside of window bounds
break
passes_found.append(pass_params)
time_start_new = pass_params['set_time'] + timedelta(minutes=1)
observer.date = time_start_new.strftime("%Y-%m-%d %H:%M:%S.%f")
elevation = pass_params['tca_alt']
window_duration = (pass_params['set_time'] - pass_params['rise_time']).total_seconds()
if not (over_station_horizon(elevation, station) and
over_min_duration(window_duration)):
continue
# Check if overlaps with existing scheduled observations
# Adjust or discard window if overlaps exist
existing_observations = Observation.objects \
.filter(ground_station=station) \
.filter(end__gt=now())
station_windows.extend(create_station_windows(station, existing_observations,
pass_params, observer, satellite, sat.latest_tle))
return passes_found, station_windows
def create_new_observation(station_id,
sat_id,
trans_id,
start_time,
end_time,
author):
ground_station = Station.objects.get(id=station_id)
gs_data = Observation.objects.filter(ground_station=ground_station).filter(end__gt=now())
window = resolve_overlaps(ground_station, gs_data, start_time, end_time)
if window[1]:
raise ObservationOverlapError
sat = Satellite.objects.get(norad_cat_id=sat_id)
trans = Transmitter.objects.get(uuid=trans_id)
tle = Tle.objects.get(id=sat.latest_tle.id)
sat_ephem = ephem.readtle(str(sat.latest_tle.tle0),
str(sat.latest_tle.tle1),
str(sat.latest_tle.tle2))
observer = ephem.Observer()
observer.lon = str(ground_station.lng)
observer.lat = str(ground_station.lat)
observer.elevation = ground_station.alt
mid_pass_time = start_time + (end_time - start_time) / 2
rise_azimuth = get_azimuth(observer, sat_ephem, start_time)
max_altitude = get_elevation(observer, sat_ephem, mid_pass_time)
set_azimuth = get_azimuth(observer, sat_ephem, end_time)
return Observation(satellite=sat, transmitter=trans, tle=tle, author=author,
start=start_time, end=end_time,
ground_station=ground_station,
rise_azimuth=rise_azimuth,
max_altitude=max_altitude,
set_azimuth=set_azimuth)
def get_available_stations(stations, downlink, user):
available_stations = []
for station in stations:
if not schedule_perms(user, station):
continue
# Skip if this station is not capable of receiving the frequency
if not downlink:
continue
frequency_supported = False
for gs_antenna in station.antenna.all():
if (gs_antenna.frequency <= downlink <= gs_antenna.frequency_max):
frequency_supported = True
if not frequency_supported:
continue
available_stations.append(station)
return available_stations