alistair23-linux/drivers/gpu/drm/radeon/rv515.c

1298 lines
40 KiB
C
Raw Normal View History

drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <linux/seq_file.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <drm/drmP.h>
#include "rv515d.h"
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
#include "radeon.h"
#include "radeon_asic.h"
#include "atom.h"
#include "rv515_reg_safe.h"
/* This files gather functions specifics to: rv515 */
static int rv515_debugfs_pipes_info_init(struct radeon_device *rdev);
static int rv515_debugfs_ga_info_init(struct radeon_device *rdev);
static void rv515_gpu_init(struct radeon_device *rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
int rv515_mc_wait_for_idle(struct radeon_device *rdev);
static const u32 crtc_offsets[2] =
{
0,
AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL
};
void rv515_debugfs(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
{
if (r100_debugfs_rbbm_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for RBBM !\n");
}
if (rv515_debugfs_pipes_info_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for pipes !\n");
}
if (rv515_debugfs_ga_info_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for pipes !\n");
}
}
void rv515_ring_start(struct radeon_device *rdev, struct radeon_ring *ring)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
{
int r;
r = radeon_ring_lock(rdev, ring, 64);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
if (r) {
return;
}
radeon_ring_write(ring, PACKET0(ISYNC_CNTL, 0));
radeon_ring_write(ring,
ISYNC_ANY2D_IDLE3D |
ISYNC_ANY3D_IDLE2D |
ISYNC_WAIT_IDLEGUI |
ISYNC_CPSCRATCH_IDLEGUI);
radeon_ring_write(ring, PACKET0(WAIT_UNTIL, 0));
radeon_ring_write(ring, WAIT_2D_IDLECLEAN | WAIT_3D_IDLECLEAN);
radeon_ring_write(ring, PACKET0(R300_DST_PIPE_CONFIG, 0));
radeon_ring_write(ring, R300_PIPE_AUTO_CONFIG);
radeon_ring_write(ring, PACKET0(GB_SELECT, 0));
radeon_ring_write(ring, 0);
radeon_ring_write(ring, PACKET0(GB_ENABLE, 0));
radeon_ring_write(ring, 0);
radeon_ring_write(ring, PACKET0(R500_SU_REG_DEST, 0));
radeon_ring_write(ring, (1 << rdev->num_gb_pipes) - 1);
radeon_ring_write(ring, PACKET0(VAP_INDEX_OFFSET, 0));
radeon_ring_write(ring, 0);
radeon_ring_write(ring, PACKET0(RB3D_DSTCACHE_CTLSTAT, 0));
radeon_ring_write(ring, RB3D_DC_FLUSH | RB3D_DC_FREE);
radeon_ring_write(ring, PACKET0(ZB_ZCACHE_CTLSTAT, 0));
radeon_ring_write(ring, ZC_FLUSH | ZC_FREE);
radeon_ring_write(ring, PACKET0(WAIT_UNTIL, 0));
radeon_ring_write(ring, WAIT_2D_IDLECLEAN | WAIT_3D_IDLECLEAN);
radeon_ring_write(ring, PACKET0(GB_AA_CONFIG, 0));
radeon_ring_write(ring, 0);
radeon_ring_write(ring, PACKET0(RB3D_DSTCACHE_CTLSTAT, 0));
radeon_ring_write(ring, RB3D_DC_FLUSH | RB3D_DC_FREE);
radeon_ring_write(ring, PACKET0(ZB_ZCACHE_CTLSTAT, 0));
radeon_ring_write(ring, ZC_FLUSH | ZC_FREE);
radeon_ring_write(ring, PACKET0(GB_MSPOS0, 0));
radeon_ring_write(ring,
((6 << MS_X0_SHIFT) |
(6 << MS_Y0_SHIFT) |
(6 << MS_X1_SHIFT) |
(6 << MS_Y1_SHIFT) |
(6 << MS_X2_SHIFT) |
(6 << MS_Y2_SHIFT) |
(6 << MSBD0_Y_SHIFT) |
(6 << MSBD0_X_SHIFT)));
radeon_ring_write(ring, PACKET0(GB_MSPOS1, 0));
radeon_ring_write(ring,
((6 << MS_X3_SHIFT) |
(6 << MS_Y3_SHIFT) |
(6 << MS_X4_SHIFT) |
(6 << MS_Y4_SHIFT) |
(6 << MS_X5_SHIFT) |
(6 << MS_Y5_SHIFT) |
(6 << MSBD1_SHIFT)));
radeon_ring_write(ring, PACKET0(GA_ENHANCE, 0));
radeon_ring_write(ring, GA_DEADLOCK_CNTL | GA_FASTSYNC_CNTL);
radeon_ring_write(ring, PACKET0(GA_POLY_MODE, 0));
radeon_ring_write(ring, FRONT_PTYPE_TRIANGE | BACK_PTYPE_TRIANGE);
radeon_ring_write(ring, PACKET0(GA_ROUND_MODE, 0));
radeon_ring_write(ring, GEOMETRY_ROUND_NEAREST | COLOR_ROUND_NEAREST);
radeon_ring_write(ring, PACKET0(0x20C8, 0));
radeon_ring_write(ring, 0);
radeon_ring_unlock_commit(rdev, ring);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
}
int rv515_mc_wait_for_idle(struct radeon_device *rdev)
{
unsigned i;
uint32_t tmp;
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32_MC(MC_STATUS);
if (tmp & MC_STATUS_IDLE) {
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
return 0;
}
DRM_UDELAY(1);
}
return -1;
}
void rv515_vga_render_disable(struct radeon_device *rdev)
{
WREG32(R_000300_VGA_RENDER_CONTROL,
RREG32(R_000300_VGA_RENDER_CONTROL) & C_000300_VGA_VSTATUS_CNTL);
}
static void rv515_gpu_init(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
{
unsigned pipe_select_current, gb_pipe_select, tmp;
if (r100_gui_wait_for_idle(rdev)) {
printk(KERN_WARNING "Failed to wait GUI idle while "
"resetting GPU. Bad things might happen.\n");
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
}
rv515_vga_render_disable(rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
r420_pipes_init(rdev);
gb_pipe_select = RREG32(R400_GB_PIPE_SELECT);
tmp = RREG32(R300_DST_PIPE_CONFIG);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
pipe_select_current = (tmp >> 2) & 3;
tmp = (1 << pipe_select_current) |
(((gb_pipe_select >> 8) & 0xF) << 4);
WREG32_PLL(0x000D, tmp);
if (r100_gui_wait_for_idle(rdev)) {
printk(KERN_WARNING "Failed to wait GUI idle while "
"resetting GPU. Bad things might happen.\n");
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
}
if (rv515_mc_wait_for_idle(rdev)) {
printk(KERN_WARNING "Failed to wait MC idle while "
"programming pipes. Bad things might happen.\n");
}
}
static void rv515_vram_get_type(struct radeon_device *rdev)
{
uint32_t tmp;
rdev->mc.vram_width = 128;
rdev->mc.vram_is_ddr = true;
tmp = RREG32_MC(RV515_MC_CNTL) & MEM_NUM_CHANNELS_MASK;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
switch (tmp) {
case 0:
rdev->mc.vram_width = 64;
break;
case 1:
rdev->mc.vram_width = 128;
break;
default:
rdev->mc.vram_width = 128;
break;
}
}
static void rv515_mc_init(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
{
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
rv515_vram_get_type(rdev);
r100_vram_init_sizes(rdev);
radeon_vram_location(rdev, &rdev->mc, 0);
rdev->mc.gtt_base_align = 0;
if (!(rdev->flags & RADEON_IS_AGP))
radeon_gtt_location(rdev, &rdev->mc);
radeon_update_bandwidth_info(rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
}
uint32_t rv515_mc_rreg(struct radeon_device *rdev, uint32_t reg)
{
uint32_t r;
WREG32(MC_IND_INDEX, 0x7f0000 | (reg & 0xffff));
r = RREG32(MC_IND_DATA);
WREG32(MC_IND_INDEX, 0);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
return r;
}
void rv515_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v)
{
WREG32(MC_IND_INDEX, 0xff0000 | ((reg) & 0xffff));
WREG32(MC_IND_DATA, (v));
WREG32(MC_IND_INDEX, 0);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
}
#if defined(CONFIG_DEBUG_FS)
static int rv515_debugfs_pipes_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
uint32_t tmp;
tmp = RREG32(GB_PIPE_SELECT);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
seq_printf(m, "GB_PIPE_SELECT 0x%08x\n", tmp);
tmp = RREG32(SU_REG_DEST);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
seq_printf(m, "SU_REG_DEST 0x%08x\n", tmp);
tmp = RREG32(GB_TILE_CONFIG);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
seq_printf(m, "GB_TILE_CONFIG 0x%08x\n", tmp);
tmp = RREG32(DST_PIPE_CONFIG);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
seq_printf(m, "DST_PIPE_CONFIG 0x%08x\n", tmp);
return 0;
}
static int rv515_debugfs_ga_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
uint32_t tmp;
tmp = RREG32(0x2140);
seq_printf(m, "VAP_CNTL_STATUS 0x%08x\n", tmp);
radeon_asic_reset(rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
tmp = RREG32(0x425C);
seq_printf(m, "GA_IDLE 0x%08x\n", tmp);
return 0;
}
static struct drm_info_list rv515_pipes_info_list[] = {
{"rv515_pipes_info", rv515_debugfs_pipes_info, 0, NULL},
};
static struct drm_info_list rv515_ga_info_list[] = {
{"rv515_ga_info", rv515_debugfs_ga_info, 0, NULL},
};
#endif
static int rv515_debugfs_pipes_info_init(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
{
#if defined(CONFIG_DEBUG_FS)
return radeon_debugfs_add_files(rdev, rv515_pipes_info_list, 1);
#else
return 0;
#endif
}
static int rv515_debugfs_ga_info_init(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 06:42:42 -06:00
{
#if defined(CONFIG_DEBUG_FS)
return radeon_debugfs_add_files(rdev, rv515_ga_info_list, 1);
#else
return 0;
#endif
}
void rv515_mc_stop(struct radeon_device *rdev, struct rv515_mc_save *save)
{
u32 crtc_enabled, tmp, frame_count, blackout;
int i, j;
save->vga_render_control = RREG32(R_000300_VGA_RENDER_CONTROL);
save->vga_hdp_control = RREG32(R_000328_VGA_HDP_CONTROL);
/* disable VGA render */
WREG32(R_000300_VGA_RENDER_CONTROL, 0);
/* blank the display controllers */
for (i = 0; i < rdev->num_crtc; i++) {
crtc_enabled = RREG32(AVIVO_D1CRTC_CONTROL + crtc_offsets[i]) & AVIVO_CRTC_EN;
if (crtc_enabled) {
save->crtc_enabled[i] = true;
tmp = RREG32(AVIVO_D1CRTC_CONTROL + crtc_offsets[i]);
if (!(tmp & AVIVO_CRTC_DISP_READ_REQUEST_DISABLE)) {
radeon_wait_for_vblank(rdev, i);
WREG32(AVIVO_D1CRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp |= AVIVO_CRTC_DISP_READ_REQUEST_DISABLE;
WREG32(AVIVO_D1CRTC_CONTROL + crtc_offsets[i], tmp);
WREG32(AVIVO_D1CRTC_UPDATE_LOCK + crtc_offsets[i], 0);
}
/* wait for the next frame */
frame_count = radeon_get_vblank_counter(rdev, i);
for (j = 0; j < rdev->usec_timeout; j++) {
if (radeon_get_vblank_counter(rdev, i) != frame_count)
break;
udelay(1);
}
/* XXX this is a hack to avoid strange behavior with EFI on certain systems */
WREG32(AVIVO_D1CRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp = RREG32(AVIVO_D1CRTC_CONTROL + crtc_offsets[i]);
tmp &= ~AVIVO_CRTC_EN;
WREG32(AVIVO_D1CRTC_CONTROL + crtc_offsets[i], tmp);
WREG32(AVIVO_D1CRTC_UPDATE_LOCK + crtc_offsets[i], 0);
save->crtc_enabled[i] = false;
/* ***** */
} else {
save->crtc_enabled[i] = false;
}
}
radeon_mc_wait_for_idle(rdev);
if (rdev->family >= CHIP_R600) {
if (rdev->family >= CHIP_RV770)
blackout = RREG32(R700_MC_CITF_CNTL);
else
blackout = RREG32(R600_CITF_CNTL);
if ((blackout & R600_BLACKOUT_MASK) != R600_BLACKOUT_MASK) {
/* Block CPU access */
WREG32(R600_BIF_FB_EN, 0);
/* blackout the MC */
blackout |= R600_BLACKOUT_MASK;
if (rdev->family >= CHIP_RV770)
WREG32(R700_MC_CITF_CNTL, blackout);
else
WREG32(R600_CITF_CNTL, blackout);
}
}
/* wait for the MC to settle */
udelay(100);
/* lock double buffered regs */
for (i = 0; i < rdev->num_crtc; i++) {
if (save->crtc_enabled[i]) {
tmp = RREG32(AVIVO_D1GRPH_UPDATE + crtc_offsets[i]);
if (!(tmp & AVIVO_D1GRPH_UPDATE_LOCK)) {
tmp |= AVIVO_D1GRPH_UPDATE_LOCK;
WREG32(AVIVO_D1GRPH_UPDATE + crtc_offsets[i], tmp);
}
tmp = RREG32(AVIVO_D1MODE_MASTER_UPDATE_LOCK + crtc_offsets[i]);
if (!(tmp & 1)) {
tmp |= 1;
WREG32(AVIVO_D1MODE_MASTER_UPDATE_LOCK + crtc_offsets[i], tmp);
}
}
}
}
void rv515_mc_resume(struct radeon_device *rdev, struct rv515_mc_save *save)
{
u32 tmp, frame_count;
int i, j;
/* update crtc base addresses */
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->family >= CHIP_RV770) {
if (i == 0) {
WREG32(R700_D1GRPH_PRIMARY_SURFACE_ADDRESS_HIGH,
upper_32_bits(rdev->mc.vram_start));
WREG32(R700_D1GRPH_SECONDARY_SURFACE_ADDRESS_HIGH,
upper_32_bits(rdev->mc.vram_start));
} else {
WREG32(R700_D2GRPH_PRIMARY_SURFACE_ADDRESS_HIGH,
upper_32_bits(rdev->mc.vram_start));
WREG32(R700_D2GRPH_SECONDARY_SURFACE_ADDRESS_HIGH,
upper_32_bits(rdev->mc.vram_start));
}
}
WREG32(R_006110_D1GRPH_PRIMARY_SURFACE_ADDRESS + crtc_offsets[i],
(u32)rdev->mc.vram_start);
WREG32(R_006118_D1GRPH_SECONDARY_SURFACE_ADDRESS + crtc_offsets[i],
(u32)rdev->mc.vram_start);
}
WREG32(R_000310_VGA_MEMORY_BASE_ADDRESS, (u32)rdev->mc.vram_start);
/* unlock regs and wait for update */
for (i = 0; i < rdev->num_crtc; i++) {
if (save->crtc_enabled[i]) {
tmp = RREG32(AVIVO_D1MODE_MASTER_UPDATE_MODE + crtc_offsets[i]);
if ((tmp & 0x3) != 0) {
tmp &= ~0x3;
WREG32(AVIVO_D1MODE_MASTER_UPDATE_MODE + crtc_offsets[i], tmp);
}
tmp = RREG32(AVIVO_D1GRPH_UPDATE + crtc_offsets[i]);
if (tmp & AVIVO_D1GRPH_UPDATE_LOCK) {
tmp &= ~AVIVO_D1GRPH_UPDATE_LOCK;
WREG32(AVIVO_D1GRPH_UPDATE + crtc_offsets[i], tmp);
}
tmp = RREG32(AVIVO_D1MODE_MASTER_UPDATE_LOCK + crtc_offsets[i]);
if (tmp & 1) {
tmp &= ~1;
WREG32(AVIVO_D1MODE_MASTER_UPDATE_LOCK + crtc_offsets[i], tmp);
}
for (j = 0; j < rdev->usec_timeout; j++) {
tmp = RREG32(AVIVO_D1GRPH_UPDATE + crtc_offsets[i]);
if ((tmp & AVIVO_D1GRPH_SURFACE_UPDATE_PENDING) == 0)
break;
udelay(1);
}
}
}
if (rdev->family >= CHIP_R600) {
/* unblackout the MC */
if (rdev->family >= CHIP_RV770)
tmp = RREG32(R700_MC_CITF_CNTL);
else
tmp = RREG32(R600_CITF_CNTL);
tmp &= ~R600_BLACKOUT_MASK;
if (rdev->family >= CHIP_RV770)
WREG32(R700_MC_CITF_CNTL, tmp);
else
WREG32(R600_CITF_CNTL, tmp);
/* allow CPU access */
WREG32(R600_BIF_FB_EN, R600_FB_READ_EN | R600_FB_WRITE_EN);
}
for (i = 0; i < rdev->num_crtc; i++) {
if (save->crtc_enabled[i]) {
tmp = RREG32(AVIVO_D1CRTC_CONTROL + crtc_offsets[i]);
tmp &= ~AVIVO_CRTC_DISP_READ_REQUEST_DISABLE;
WREG32(AVIVO_D1CRTC_CONTROL + crtc_offsets[i], tmp);
/* wait for the next frame */
frame_count = radeon_get_vblank_counter(rdev, i);
for (j = 0; j < rdev->usec_timeout; j++) {
if (radeon_get_vblank_counter(rdev, i) != frame_count)
break;
udelay(1);
}
}
}
/* Unlock vga access */
WREG32(R_000328_VGA_HDP_CONTROL, save->vga_hdp_control);
mdelay(1);
WREG32(R_000300_VGA_RENDER_CONTROL, save->vga_render_control);
}
static void rv515_mc_program(struct radeon_device *rdev)
{
struct rv515_mc_save save;
/* Stops all mc clients */
rv515_mc_stop(rdev, &save);
/* Wait for mc idle */
if (rv515_mc_wait_for_idle(rdev))
dev_warn(rdev->dev, "Wait MC idle timeout before updating MC.\n");
/* Write VRAM size in case we are limiting it */
WREG32(R_0000F8_CONFIG_MEMSIZE, rdev->mc.real_vram_size);
/* Program MC, should be a 32bits limited address space */
WREG32_MC(R_000001_MC_FB_LOCATION,
S_000001_MC_FB_START(rdev->mc.vram_start >> 16) |
S_000001_MC_FB_TOP(rdev->mc.vram_end >> 16));
WREG32(R_000134_HDP_FB_LOCATION,
S_000134_HDP_FB_START(rdev->mc.vram_start >> 16));
if (rdev->flags & RADEON_IS_AGP) {
WREG32_MC(R_000002_MC_AGP_LOCATION,
S_000002_MC_AGP_START(rdev->mc.gtt_start >> 16) |
S_000002_MC_AGP_TOP(rdev->mc.gtt_end >> 16));
WREG32_MC(R_000003_MC_AGP_BASE, lower_32_bits(rdev->mc.agp_base));
WREG32_MC(R_000004_MC_AGP_BASE_2,
S_000004_AGP_BASE_ADDR_2(upper_32_bits(rdev->mc.agp_base)));
} else {
WREG32_MC(R_000002_MC_AGP_LOCATION, 0xFFFFFFFF);
WREG32_MC(R_000003_MC_AGP_BASE, 0);
WREG32_MC(R_000004_MC_AGP_BASE_2, 0);
}
rv515_mc_resume(rdev, &save);
}
void rv515_clock_startup(struct radeon_device *rdev)
{
if (radeon_dynclks != -1 && radeon_dynclks)
radeon_atom_set_clock_gating(rdev, 1);
/* We need to force on some of the block */
WREG32_PLL(R_00000F_CP_DYN_CNTL,
RREG32_PLL(R_00000F_CP_DYN_CNTL) | S_00000F_CP_FORCEON(1));
WREG32_PLL(R_000011_E2_DYN_CNTL,
RREG32_PLL(R_000011_E2_DYN_CNTL) | S_000011_E2_FORCEON(1));
WREG32_PLL(R_000013_IDCT_DYN_CNTL,
RREG32_PLL(R_000013_IDCT_DYN_CNTL) | S_000013_IDCT_FORCEON(1));
}
static int rv515_startup(struct radeon_device *rdev)
{
int r;
rv515_mc_program(rdev);
/* Resume clock */
rv515_clock_startup(rdev);
/* Initialize GPU configuration (# pipes, ...) */
rv515_gpu_init(rdev);
/* Initialize GART (initialize after TTM so we can allocate
* memory through TTM but finalize after TTM) */
if (rdev->flags & RADEON_IS_PCIE) {
r = rv370_pcie_gart_enable(rdev);
if (r)
return r;
}
/* allocate wb buffer */
r = radeon_wb_init(rdev);
if (r)
return r;
r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
return r;
}
/* Enable IRQ */
radeon: Fix system hang issue when using KMS with older cards The current radeon driver initialization routines, when using KMS, are written so that the IRQ installation routine is called before initializing the WB buffer and the CP rings. With some ASICs, though, the IRQ routine tries to access the GFX_INDEX ring causing a call to RREG32 with the value of -1 in radeon_fence_read. This, in turn causes the system to completely hang with some cards, requiring a hard reset. A call stack that can cause such a hang looks like this (using rv515 ASIC for the example here): * rv515_init (rv515.c) * radeon_irq_kms_init (radeon_irq_kms.c) * drm_irq_install (drm_irq.c) * radeon_driver_irq_preinstall_kms (radeon_irq_kms.c) * rs600_irq_process (rs600.c) * radeon_fence_process - due to SW interrupt (radeon_fence.c) * radeon_fence_read (radeon_fence.c) * hang due to RREG32(-1) The patch moves the IRQ installation to the card startup routine, after the ring has been initialized, but before the IRQ has been set. This fixes the issue, but requires a check to see if the IRQ is already installed, as is the case in the system resume codepath. I have tested the patch on three machines using the rv515, the rv770 and the evergreen ASIC. They worked without issues. This seems to be a known issue and has been reported on several bug tracking sites by various distributions (see links below). Most of reports recommend booting the system with KMS disabled and then enabling KMS by reloading the radeon module. For some reason, this was indeed a usable workaround, however, UMS is now deprecated and disabled by default. Bug reports: https://bugzilla.redhat.com/show_bug.cgi?id=845745 https://bugs.launchpad.net/ubuntu/+source/linux/+bug/561789 https://bbs.archlinux.org/viewtopic.php?id=156964 Signed-off-by: Adis Hamzić <adis@hamzadis.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Cc: stable@vger.kernel.org
2013-06-02 08:47:54 -06:00
if (!rdev->irq.installed) {
r = radeon_irq_kms_init(rdev);
if (r)
return r;
}
rs600_irq_set(rdev);
rdev->config.r300.hdp_cntl = RREG32(RADEON_HOST_PATH_CNTL);
/* 1M ring buffer */
r = r100_cp_init(rdev, 1024 * 1024);
if (r) {
dev_err(rdev->dev, "failed initializing CP (%d).\n", r);
return r;
}
r = radeon_ib_pool_init(rdev);
if (r) {
dev_err(rdev->dev, "IB initialization failed (%d).\n", r);
return r;
}
return 0;
}
int rv515_resume(struct radeon_device *rdev)
{
int r;
/* Make sur GART are not working */
if (rdev->flags & RADEON_IS_PCIE)
rv370_pcie_gart_disable(rdev);
/* Resume clock before doing reset */
rv515_clock_startup(rdev);
/* Reset gpu before posting otherwise ATOM will enter infinite loop */
if (radeon_asic_reset(rdev)) {
dev_warn(rdev->dev, "GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n",
RREG32(R_000E40_RBBM_STATUS),
RREG32(R_0007C0_CP_STAT));
}
/* post */
atom_asic_init(rdev->mode_info.atom_context);
/* Resume clock after posting */
rv515_clock_startup(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
rdev->accel_working = true;
r = rv515_startup(rdev);
if (r) {
rdev->accel_working = false;
}
return r;
}
int rv515_suspend(struct radeon_device *rdev)
{
r100_cp_disable(rdev);
radeon_wb_disable(rdev);
rs600_irq_disable(rdev);
if (rdev->flags & RADEON_IS_PCIE)
rv370_pcie_gart_disable(rdev);
return 0;
}
void rv515_set_safe_registers(struct radeon_device *rdev)
{
rdev->config.r300.reg_safe_bm = rv515_reg_safe_bm;
rdev->config.r300.reg_safe_bm_size = ARRAY_SIZE(rv515_reg_safe_bm);
}
void rv515_fini(struct radeon_device *rdev)
{
r100_cp_fini(rdev);
radeon_wb_fini(rdev);
radeon_ib_pool_fini(rdev);
radeon_gem_fini(rdev);
rv370_pcie_gart_fini(rdev);
radeon_agp_fini(rdev);
radeon_irq_kms_fini(rdev);
radeon_fence_driver_fini(rdev);
radeon_bo_fini(rdev);
radeon_atombios_fini(rdev);
kfree(rdev->bios);
rdev->bios = NULL;
}
int rv515_init(struct radeon_device *rdev)
{
int r;
/* Initialize scratch registers */
radeon_scratch_init(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
/* TODO: disable VGA need to use VGA request */
/* restore some register to sane defaults */
r100_restore_sanity(rdev);
/* BIOS*/
if (!radeon_get_bios(rdev)) {
if (ASIC_IS_AVIVO(rdev))
return -EINVAL;
}
if (rdev->is_atom_bios) {
r = radeon_atombios_init(rdev);
if (r)
return r;
} else {
dev_err(rdev->dev, "Expecting atombios for RV515 GPU\n");
return -EINVAL;
}
/* Reset gpu before posting otherwise ATOM will enter infinite loop */
if (radeon_asic_reset(rdev)) {
dev_warn(rdev->dev,
"GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n",
RREG32(R_000E40_RBBM_STATUS),
RREG32(R_0007C0_CP_STAT));
}
/* check if cards are posted or not */
if (radeon_boot_test_post_card(rdev) == false)
return -EINVAL;
/* Initialize clocks */
radeon_get_clock_info(rdev->ddev);
/* initialize AGP */
if (rdev->flags & RADEON_IS_AGP) {
r = radeon_agp_init(rdev);
if (r) {
radeon_agp_disable(rdev);
}
}
/* initialize memory controller */
rv515_mc_init(rdev);
rv515_debugfs(rdev);
/* Fence driver */
r = radeon_fence_driver_init(rdev);
if (r)
return r;
/* Memory manager */
r = radeon_bo_init(rdev);
if (r)
return r;
r = rv370_pcie_gart_init(rdev);
if (r)
return r;
rv515_set_safe_registers(rdev);
rdev->accel_working = true;
r = rv515_startup(rdev);
if (r) {
/* Somethings want wront with the accel init stop accel */
dev_err(rdev->dev, "Disabling GPU acceleration\n");
r100_cp_fini(rdev);
radeon_wb_fini(rdev);
radeon_ib_pool_fini(rdev);
radeon_irq_kms_fini(rdev);
rv370_pcie_gart_fini(rdev);
radeon_agp_fini(rdev);
rdev->accel_working = false;
}
return 0;
}
void atom_rv515_force_tv_scaler(struct radeon_device *rdev, struct radeon_crtc *crtc)
{
int index_reg = 0x6578 + crtc->crtc_offset;
int data_reg = 0x657c + crtc->crtc_offset;
WREG32(0x659C + crtc->crtc_offset, 0x0);
WREG32(0x6594 + crtc->crtc_offset, 0x705);
WREG32(0x65A4 + crtc->crtc_offset, 0x10001);
WREG32(0x65D8 + crtc->crtc_offset, 0x0);
WREG32(0x65B0 + crtc->crtc_offset, 0x0);
WREG32(0x65C0 + crtc->crtc_offset, 0x0);
WREG32(0x65D4 + crtc->crtc_offset, 0x0);
WREG32(index_reg, 0x0);
WREG32(data_reg, 0x841880A8);
WREG32(index_reg, 0x1);
WREG32(data_reg, 0x84208680);
WREG32(index_reg, 0x2);
WREG32(data_reg, 0xBFF880B0);
WREG32(index_reg, 0x100);
WREG32(data_reg, 0x83D88088);
WREG32(index_reg, 0x101);
WREG32(data_reg, 0x84608680);
WREG32(index_reg, 0x102);
WREG32(data_reg, 0xBFF080D0);
WREG32(index_reg, 0x200);
WREG32(data_reg, 0x83988068);
WREG32(index_reg, 0x201);
WREG32(data_reg, 0x84A08680);
WREG32(index_reg, 0x202);
WREG32(data_reg, 0xBFF080F8);
WREG32(index_reg, 0x300);
WREG32(data_reg, 0x83588058);
WREG32(index_reg, 0x301);
WREG32(data_reg, 0x84E08660);
WREG32(index_reg, 0x302);
WREG32(data_reg, 0xBFF88120);
WREG32(index_reg, 0x400);
WREG32(data_reg, 0x83188040);
WREG32(index_reg, 0x401);
WREG32(data_reg, 0x85008660);
WREG32(index_reg, 0x402);
WREG32(data_reg, 0xBFF88150);
WREG32(index_reg, 0x500);
WREG32(data_reg, 0x82D88030);
WREG32(index_reg, 0x501);
WREG32(data_reg, 0x85408640);
WREG32(index_reg, 0x502);
WREG32(data_reg, 0xBFF88180);
WREG32(index_reg, 0x600);
WREG32(data_reg, 0x82A08018);
WREG32(index_reg, 0x601);
WREG32(data_reg, 0x85808620);
WREG32(index_reg, 0x602);
WREG32(data_reg, 0xBFF081B8);
WREG32(index_reg, 0x700);
WREG32(data_reg, 0x82608010);
WREG32(index_reg, 0x701);
WREG32(data_reg, 0x85A08600);
WREG32(index_reg, 0x702);
WREG32(data_reg, 0x800081F0);
WREG32(index_reg, 0x800);
WREG32(data_reg, 0x8228BFF8);
WREG32(index_reg, 0x801);
WREG32(data_reg, 0x85E085E0);
WREG32(index_reg, 0x802);
WREG32(data_reg, 0xBFF88228);
WREG32(index_reg, 0x10000);
WREG32(data_reg, 0x82A8BF00);
WREG32(index_reg, 0x10001);
WREG32(data_reg, 0x82A08CC0);
WREG32(index_reg, 0x10002);
WREG32(data_reg, 0x8008BEF8);
WREG32(index_reg, 0x10100);
WREG32(data_reg, 0x81F0BF28);
WREG32(index_reg, 0x10101);
WREG32(data_reg, 0x83608CA0);
WREG32(index_reg, 0x10102);
WREG32(data_reg, 0x8018BED0);
WREG32(index_reg, 0x10200);
WREG32(data_reg, 0x8148BF38);
WREG32(index_reg, 0x10201);
WREG32(data_reg, 0x84408C80);
WREG32(index_reg, 0x10202);
WREG32(data_reg, 0x8008BEB8);
WREG32(index_reg, 0x10300);
WREG32(data_reg, 0x80B0BF78);
WREG32(index_reg, 0x10301);
WREG32(data_reg, 0x85008C20);
WREG32(index_reg, 0x10302);
WREG32(data_reg, 0x8020BEA0);
WREG32(index_reg, 0x10400);
WREG32(data_reg, 0x8028BF90);
WREG32(index_reg, 0x10401);
WREG32(data_reg, 0x85E08BC0);
WREG32(index_reg, 0x10402);
WREG32(data_reg, 0x8018BE90);
WREG32(index_reg, 0x10500);
WREG32(data_reg, 0xBFB8BFB0);
WREG32(index_reg, 0x10501);
WREG32(data_reg, 0x86C08B40);
WREG32(index_reg, 0x10502);
WREG32(data_reg, 0x8010BE90);
WREG32(index_reg, 0x10600);
WREG32(data_reg, 0xBF58BFC8);
WREG32(index_reg, 0x10601);
WREG32(data_reg, 0x87A08AA0);
WREG32(index_reg, 0x10602);
WREG32(data_reg, 0x8010BE98);
WREG32(index_reg, 0x10700);
WREG32(data_reg, 0xBF10BFF0);
WREG32(index_reg, 0x10701);
WREG32(data_reg, 0x886089E0);
WREG32(index_reg, 0x10702);
WREG32(data_reg, 0x8018BEB0);
WREG32(index_reg, 0x10800);
WREG32(data_reg, 0xBED8BFE8);
WREG32(index_reg, 0x10801);
WREG32(data_reg, 0x89408940);
WREG32(index_reg, 0x10802);
WREG32(data_reg, 0xBFE8BED8);
WREG32(index_reg, 0x20000);
WREG32(data_reg, 0x80008000);
WREG32(index_reg, 0x20001);
WREG32(data_reg, 0x90008000);
WREG32(index_reg, 0x20002);
WREG32(data_reg, 0x80008000);
WREG32(index_reg, 0x20003);
WREG32(data_reg, 0x80008000);
WREG32(index_reg, 0x20100);
WREG32(data_reg, 0x80108000);
WREG32(index_reg, 0x20101);
WREG32(data_reg, 0x8FE0BF70);
WREG32(index_reg, 0x20102);
WREG32(data_reg, 0xBFE880C0);
WREG32(index_reg, 0x20103);
WREG32(data_reg, 0x80008000);
WREG32(index_reg, 0x20200);
WREG32(data_reg, 0x8018BFF8);
WREG32(index_reg, 0x20201);
WREG32(data_reg, 0x8F80BF08);
WREG32(index_reg, 0x20202);
WREG32(data_reg, 0xBFD081A0);
WREG32(index_reg, 0x20203);
WREG32(data_reg, 0xBFF88000);
WREG32(index_reg, 0x20300);
WREG32(data_reg, 0x80188000);
WREG32(index_reg, 0x20301);
WREG32(data_reg, 0x8EE0BEC0);
WREG32(index_reg, 0x20302);
WREG32(data_reg, 0xBFB082A0);
WREG32(index_reg, 0x20303);
WREG32(data_reg, 0x80008000);
WREG32(index_reg, 0x20400);
WREG32(data_reg, 0x80188000);
WREG32(index_reg, 0x20401);
WREG32(data_reg, 0x8E00BEA0);
WREG32(index_reg, 0x20402);
WREG32(data_reg, 0xBF8883C0);
WREG32(index_reg, 0x20403);
WREG32(data_reg, 0x80008000);
WREG32(index_reg, 0x20500);
WREG32(data_reg, 0x80188000);
WREG32(index_reg, 0x20501);
WREG32(data_reg, 0x8D00BE90);
WREG32(index_reg, 0x20502);
WREG32(data_reg, 0xBF588500);
WREG32(index_reg, 0x20503);
WREG32(data_reg, 0x80008008);
WREG32(index_reg, 0x20600);
WREG32(data_reg, 0x80188000);
WREG32(index_reg, 0x20601);
WREG32(data_reg, 0x8BC0BE98);
WREG32(index_reg, 0x20602);
WREG32(data_reg, 0xBF308660);
WREG32(index_reg, 0x20603);
WREG32(data_reg, 0x80008008);
WREG32(index_reg, 0x20700);
WREG32(data_reg, 0x80108000);
WREG32(index_reg, 0x20701);
WREG32(data_reg, 0x8A80BEB0);
WREG32(index_reg, 0x20702);
WREG32(data_reg, 0xBF0087C0);
WREG32(index_reg, 0x20703);
WREG32(data_reg, 0x80008008);
WREG32(index_reg, 0x20800);
WREG32(data_reg, 0x80108000);
WREG32(index_reg, 0x20801);
WREG32(data_reg, 0x8920BED0);
WREG32(index_reg, 0x20802);
WREG32(data_reg, 0xBED08920);
WREG32(index_reg, 0x20803);
WREG32(data_reg, 0x80008010);
WREG32(index_reg, 0x30000);
WREG32(data_reg, 0x90008000);
WREG32(index_reg, 0x30001);
WREG32(data_reg, 0x80008000);
WREG32(index_reg, 0x30100);
WREG32(data_reg, 0x8FE0BF90);
WREG32(index_reg, 0x30101);
WREG32(data_reg, 0xBFF880A0);
WREG32(index_reg, 0x30200);
WREG32(data_reg, 0x8F60BF40);
WREG32(index_reg, 0x30201);
WREG32(data_reg, 0xBFE88180);
WREG32(index_reg, 0x30300);
WREG32(data_reg, 0x8EC0BF00);
WREG32(index_reg, 0x30301);
WREG32(data_reg, 0xBFC88280);
WREG32(index_reg, 0x30400);
WREG32(data_reg, 0x8DE0BEE0);
WREG32(index_reg, 0x30401);
WREG32(data_reg, 0xBFA083A0);
WREG32(index_reg, 0x30500);
WREG32(data_reg, 0x8CE0BED0);
WREG32(index_reg, 0x30501);
WREG32(data_reg, 0xBF7884E0);
WREG32(index_reg, 0x30600);
WREG32(data_reg, 0x8BA0BED8);
WREG32(index_reg, 0x30601);
WREG32(data_reg, 0xBF508640);
WREG32(index_reg, 0x30700);
WREG32(data_reg, 0x8A60BEE8);
WREG32(index_reg, 0x30701);
WREG32(data_reg, 0xBF2087A0);
WREG32(index_reg, 0x30800);
WREG32(data_reg, 0x8900BF00);
WREG32(index_reg, 0x30801);
WREG32(data_reg, 0xBF008900);
}
struct rv515_watermark {
u32 lb_request_fifo_depth;
fixed20_12 num_line_pair;
fixed20_12 estimated_width;
fixed20_12 worst_case_latency;
fixed20_12 consumption_rate;
fixed20_12 active_time;
fixed20_12 dbpp;
fixed20_12 priority_mark_max;
fixed20_12 priority_mark;
fixed20_12 sclk;
};
static void rv515_crtc_bandwidth_compute(struct radeon_device *rdev,
struct radeon_crtc *crtc,
struct rv515_watermark *wm,
bool low)
{
struct drm_display_mode *mode = &crtc->base.mode;
fixed20_12 a, b, c;
fixed20_12 pclk, request_fifo_depth, tolerable_latency, estimated_width;
fixed20_12 consumption_time, line_time, chunk_time, read_delay_latency;
fixed20_12 sclk;
u32 selected_sclk;
if (!crtc->base.enabled) {
/* FIXME: wouldn't it better to set priority mark to maximum */
wm->lb_request_fifo_depth = 4;
return;
}
/* rv6xx, rv7xx */
if ((rdev->family >= CHIP_RV610) &&
(rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled)
selected_sclk = radeon_dpm_get_sclk(rdev, low);
else
selected_sclk = rdev->pm.current_sclk;
/* sclk in Mhz */
a.full = dfixed_const(100);
sclk.full = dfixed_const(selected_sclk);
sclk.full = dfixed_div(sclk, a);
if (crtc->vsc.full > dfixed_const(2))
wm->num_line_pair.full = dfixed_const(2);
else
wm->num_line_pair.full = dfixed_const(1);
b.full = dfixed_const(mode->crtc_hdisplay);
c.full = dfixed_const(256);
a.full = dfixed_div(b, c);
request_fifo_depth.full = dfixed_mul(a, wm->num_line_pair);
request_fifo_depth.full = dfixed_ceil(request_fifo_depth);
if (a.full < dfixed_const(4)) {
wm->lb_request_fifo_depth = 4;
} else {
wm->lb_request_fifo_depth = dfixed_trunc(request_fifo_depth);
}
/* Determine consumption rate
* pclk = pixel clock period(ns) = 1000 / (mode.clock / 1000)
* vtaps = number of vertical taps,
* vsc = vertical scaling ratio, defined as source/destination
* hsc = horizontal scaling ration, defined as source/destination
*/
a.full = dfixed_const(mode->clock);
b.full = dfixed_const(1000);
a.full = dfixed_div(a, b);
pclk.full = dfixed_div(b, a);
if (crtc->rmx_type != RMX_OFF) {
b.full = dfixed_const(2);
if (crtc->vsc.full > b.full)
b.full = crtc->vsc.full;
b.full = dfixed_mul(b, crtc->hsc);
c.full = dfixed_const(2);
b.full = dfixed_div(b, c);
consumption_time.full = dfixed_div(pclk, b);
} else {
consumption_time.full = pclk.full;
}
a.full = dfixed_const(1);
wm->consumption_rate.full = dfixed_div(a, consumption_time);
/* Determine line time
* LineTime = total time for one line of displayhtotal
* LineTime = total number of horizontal pixels
* pclk = pixel clock period(ns)
*/
a.full = dfixed_const(crtc->base.mode.crtc_htotal);
line_time.full = dfixed_mul(a, pclk);
/* Determine active time
* ActiveTime = time of active region of display within one line,
* hactive = total number of horizontal active pixels
* htotal = total number of horizontal pixels
*/
a.full = dfixed_const(crtc->base.mode.crtc_htotal);
b.full = dfixed_const(crtc->base.mode.crtc_hdisplay);
wm->active_time.full = dfixed_mul(line_time, b);
wm->active_time.full = dfixed_div(wm->active_time, a);
/* Determine chunk time
* ChunkTime = the time it takes the DCP to send one chunk of data
* to the LB which consists of pipeline delay and inter chunk gap
* sclk = system clock(Mhz)
*/
a.full = dfixed_const(600 * 1000);
chunk_time.full = dfixed_div(a, sclk);
read_delay_latency.full = dfixed_const(1000);
/* Determine the worst case latency
* NumLinePair = Number of line pairs to request(1=2 lines, 2=4 lines)
* WorstCaseLatency = worst case time from urgent to when the MC starts
* to return data
* READ_DELAY_IDLE_MAX = constant of 1us
* ChunkTime = time it takes the DCP to send one chunk of data to the LB
* which consists of pipeline delay and inter chunk gap
*/
if (dfixed_trunc(wm->num_line_pair) > 1) {
a.full = dfixed_const(3);
wm->worst_case_latency.full = dfixed_mul(a, chunk_time);
wm->worst_case_latency.full += read_delay_latency.full;
} else {
wm->worst_case_latency.full = chunk_time.full + read_delay_latency.full;
}
/* Determine the tolerable latency
* TolerableLatency = Any given request has only 1 line time
* for the data to be returned
* LBRequestFifoDepth = Number of chunk requests the LB can
* put into the request FIFO for a display
* LineTime = total time for one line of display
* ChunkTime = the time it takes the DCP to send one chunk
* of data to the LB which consists of
* pipeline delay and inter chunk gap
*/
if ((2+wm->lb_request_fifo_depth) >= dfixed_trunc(request_fifo_depth)) {
tolerable_latency.full = line_time.full;
} else {
tolerable_latency.full = dfixed_const(wm->lb_request_fifo_depth - 2);
tolerable_latency.full = request_fifo_depth.full - tolerable_latency.full;
tolerable_latency.full = dfixed_mul(tolerable_latency, chunk_time);
tolerable_latency.full = line_time.full - tolerable_latency.full;
}
/* We assume worst case 32bits (4 bytes) */
wm->dbpp.full = dfixed_const(2 * 16);
/* Determine the maximum priority mark
* width = viewport width in pixels
*/
a.full = dfixed_const(16);
wm->priority_mark_max.full = dfixed_const(crtc->base.mode.crtc_hdisplay);
wm->priority_mark_max.full = dfixed_div(wm->priority_mark_max, a);
wm->priority_mark_max.full = dfixed_ceil(wm->priority_mark_max);
/* Determine estimated width */
estimated_width.full = tolerable_latency.full - wm->worst_case_latency.full;
estimated_width.full = dfixed_div(estimated_width, consumption_time);
if (dfixed_trunc(estimated_width) > crtc->base.mode.crtc_hdisplay) {
wm->priority_mark.full = wm->priority_mark_max.full;
} else {
a.full = dfixed_const(16);
wm->priority_mark.full = dfixed_div(estimated_width, a);
wm->priority_mark.full = dfixed_ceil(wm->priority_mark);
wm->priority_mark.full = wm->priority_mark_max.full - wm->priority_mark.full;
}
}
static void rv515_compute_mode_priority(struct radeon_device *rdev,
struct rv515_watermark *wm0,
struct rv515_watermark *wm1,
struct drm_display_mode *mode0,
struct drm_display_mode *mode1,
u32 *d1mode_priority_a_cnt,
u32 *d2mode_priority_a_cnt)
{
fixed20_12 priority_mark02, priority_mark12, fill_rate;
fixed20_12 a, b;
*d1mode_priority_a_cnt = MODE_PRIORITY_OFF;
*d2mode_priority_a_cnt = MODE_PRIORITY_OFF;
if (mode0 && mode1) {
if (dfixed_trunc(wm0->dbpp) > 64)
a.full = dfixed_div(wm0->dbpp, wm0->num_line_pair);
else
a.full = wm0->num_line_pair.full;
if (dfixed_trunc(wm1->dbpp) > 64)
b.full = dfixed_div(wm1->dbpp, wm1->num_line_pair);
else
b.full = wm1->num_line_pair.full;
a.full += b.full;
fill_rate.full = dfixed_div(wm0->sclk, a);
if (wm0->consumption_rate.full > fill_rate.full) {
b.full = wm0->consumption_rate.full - fill_rate.full;
b.full = dfixed_mul(b, wm0->active_time);
a.full = dfixed_const(16);
b.full = dfixed_div(b, a);
a.full = dfixed_mul(wm0->worst_case_latency,
wm0->consumption_rate);
priority_mark02.full = a.full + b.full;
} else {
a.full = dfixed_mul(wm0->worst_case_latency,
wm0->consumption_rate);
b.full = dfixed_const(16 * 1000);
priority_mark02.full = dfixed_div(a, b);
}
if (wm1->consumption_rate.full > fill_rate.full) {
b.full = wm1->consumption_rate.full - fill_rate.full;
b.full = dfixed_mul(b, wm1->active_time);
a.full = dfixed_const(16);
b.full = dfixed_div(b, a);
a.full = dfixed_mul(wm1->worst_case_latency,
wm1->consumption_rate);
priority_mark12.full = a.full + b.full;
} else {
a.full = dfixed_mul(wm1->worst_case_latency,
wm1->consumption_rate);
b.full = dfixed_const(16 * 1000);
priority_mark12.full = dfixed_div(a, b);
}
if (wm0->priority_mark.full > priority_mark02.full)
priority_mark02.full = wm0->priority_mark.full;
if (dfixed_trunc(priority_mark02) < 0)
priority_mark02.full = 0;
if (wm0->priority_mark_max.full > priority_mark02.full)
priority_mark02.full = wm0->priority_mark_max.full;
if (wm1->priority_mark.full > priority_mark12.full)
priority_mark12.full = wm1->priority_mark.full;
if (dfixed_trunc(priority_mark12) < 0)
priority_mark12.full = 0;
if (wm1->priority_mark_max.full > priority_mark12.full)
priority_mark12.full = wm1->priority_mark_max.full;
*d1mode_priority_a_cnt = dfixed_trunc(priority_mark02);
*d2mode_priority_a_cnt = dfixed_trunc(priority_mark12);
if (rdev->disp_priority == 2) {
*d1mode_priority_a_cnt |= MODE_PRIORITY_ALWAYS_ON;
*d2mode_priority_a_cnt |= MODE_PRIORITY_ALWAYS_ON;
}
} else if (mode0) {
if (dfixed_trunc(wm0->dbpp) > 64)
a.full = dfixed_div(wm0->dbpp, wm0->num_line_pair);
else
a.full = wm0->num_line_pair.full;
fill_rate.full = dfixed_div(wm0->sclk, a);
if (wm0->consumption_rate.full > fill_rate.full) {
b.full = wm0->consumption_rate.full - fill_rate.full;
b.full = dfixed_mul(b, wm0->active_time);
a.full = dfixed_const(16);
b.full = dfixed_div(b, a);
a.full = dfixed_mul(wm0->worst_case_latency,
wm0->consumption_rate);
priority_mark02.full = a.full + b.full;
} else {
a.full = dfixed_mul(wm0->worst_case_latency,
wm0->consumption_rate);
b.full = dfixed_const(16);
priority_mark02.full = dfixed_div(a, b);
}
if (wm0->priority_mark.full > priority_mark02.full)
priority_mark02.full = wm0->priority_mark.full;
if (dfixed_trunc(priority_mark02) < 0)
priority_mark02.full = 0;
if (wm0->priority_mark_max.full > priority_mark02.full)
priority_mark02.full = wm0->priority_mark_max.full;
*d1mode_priority_a_cnt = dfixed_trunc(priority_mark02);
if (rdev->disp_priority == 2)
*d1mode_priority_a_cnt |= MODE_PRIORITY_ALWAYS_ON;
} else if (mode1) {
if (dfixed_trunc(wm1->dbpp) > 64)
a.full = dfixed_div(wm1->dbpp, wm1->num_line_pair);
else
a.full = wm1->num_line_pair.full;
fill_rate.full = dfixed_div(wm1->sclk, a);
if (wm1->consumption_rate.full > fill_rate.full) {
b.full = wm1->consumption_rate.full - fill_rate.full;
b.full = dfixed_mul(b, wm1->active_time);
a.full = dfixed_const(16);
b.full = dfixed_div(b, a);
a.full = dfixed_mul(wm1->worst_case_latency,
wm1->consumption_rate);
priority_mark12.full = a.full + b.full;
} else {
a.full = dfixed_mul(wm1->worst_case_latency,
wm1->consumption_rate);
b.full = dfixed_const(16 * 1000);
priority_mark12.full = dfixed_div(a, b);
}
if (wm1->priority_mark.full > priority_mark12.full)
priority_mark12.full = wm1->priority_mark.full;
if (dfixed_trunc(priority_mark12) < 0)
priority_mark12.full = 0;
if (wm1->priority_mark_max.full > priority_mark12.full)
priority_mark12.full = wm1->priority_mark_max.full;
*d2mode_priority_a_cnt = dfixed_trunc(priority_mark12);
if (rdev->disp_priority == 2)
*d2mode_priority_a_cnt |= MODE_PRIORITY_ALWAYS_ON;
}
}
void rv515_bandwidth_avivo_update(struct radeon_device *rdev)
{
struct drm_display_mode *mode0 = NULL;
struct drm_display_mode *mode1 = NULL;
struct rv515_watermark wm0_high, wm0_low;
struct rv515_watermark wm1_high, wm1_low;
u32 tmp;
u32 d1mode_priority_a_cnt, d1mode_priority_b_cnt;
u32 d2mode_priority_a_cnt, d2mode_priority_b_cnt;
if (rdev->mode_info.crtcs[0]->base.enabled)
mode0 = &rdev->mode_info.crtcs[0]->base.mode;
if (rdev->mode_info.crtcs[1]->base.enabled)
mode1 = &rdev->mode_info.crtcs[1]->base.mode;
rs690_line_buffer_adjust(rdev, mode0, mode1);
rv515_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[0], &wm0_high, false);
rv515_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[1], &wm1_high, false);
rv515_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[0], &wm0_low, false);
rv515_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[1], &wm1_low, false);
tmp = wm0_high.lb_request_fifo_depth;
tmp |= wm1_high.lb_request_fifo_depth << 16;
WREG32(LB_MAX_REQ_OUTSTANDING, tmp);
rv515_compute_mode_priority(rdev,
&wm0_high, &wm1_high,
mode0, mode1,
&d1mode_priority_a_cnt, &d2mode_priority_a_cnt);
rv515_compute_mode_priority(rdev,
&wm0_low, &wm1_low,
mode0, mode1,
&d1mode_priority_b_cnt, &d2mode_priority_b_cnt);
WREG32(D1MODE_PRIORITY_A_CNT, d1mode_priority_a_cnt);
WREG32(D1MODE_PRIORITY_B_CNT, d1mode_priority_b_cnt);
WREG32(D2MODE_PRIORITY_A_CNT, d2mode_priority_a_cnt);
WREG32(D2MODE_PRIORITY_B_CNT, d2mode_priority_b_cnt);
}
void rv515_bandwidth_update(struct radeon_device *rdev)
{
uint32_t tmp;
struct drm_display_mode *mode0 = NULL;
struct drm_display_mode *mode1 = NULL;
radeon_update_display_priority(rdev);
if (rdev->mode_info.crtcs[0]->base.enabled)
mode0 = &rdev->mode_info.crtcs[0]->base.mode;
if (rdev->mode_info.crtcs[1]->base.enabled)
mode1 = &rdev->mode_info.crtcs[1]->base.mode;
/*
* Set display0/1 priority up in the memory controller for
* modes if the user specifies HIGH for displaypriority
* option.
*/
if ((rdev->disp_priority == 2) &&
(rdev->family == CHIP_RV515)) {
tmp = RREG32_MC(MC_MISC_LAT_TIMER);
tmp &= ~MC_DISP1R_INIT_LAT_MASK;
tmp &= ~MC_DISP0R_INIT_LAT_MASK;
if (mode1)
tmp |= (1 << MC_DISP1R_INIT_LAT_SHIFT);
if (mode0)
tmp |= (1 << MC_DISP0R_INIT_LAT_SHIFT);
WREG32_MC(MC_MISC_LAT_TIMER, tmp);
}
rv515_bandwidth_avivo_update(rdev);
}