1
0
Fork 0
stockfish/src/search.cpp

2875 lines
96 KiB
C++
Raw Normal View History

2008-08-31 23:59:13 -06:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
2008-08-31 23:59:13 -06:00
Stockfish is free software: you can redistribute it and/or modify
2008-08-31 23:59:13 -06:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
2008-08-31 23:59:13 -06:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2008-08-31 23:59:13 -06:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <cmath>
#include <cstring>
2008-08-31 23:59:13 -06:00
#include <fstream>
#include <iostream>
#include <sstream>
#include "book.h"
#include "evaluate.h"
#include "history.h"
#include "misc.h"
#include "movegen.h"
2008-08-31 23:59:13 -06:00
#include "movepick.h"
#include "lock.h"
2008-08-31 23:59:13 -06:00
#include "san.h"
#include "search.h"
#include "thread.h"
#include "tt.h"
#include "ucioption.h"
using std::cout;
using std::endl;
2008-08-31 23:59:13 -06:00
////
//// Local definitions
////
namespace {
/// Types
enum NodeType { NonPV, PV };
// Set to true to force running with one thread.
// Used for debugging SMP code.
const bool FakeSplit = false;
// ThreadsManager class is used to handle all the threads related stuff in search,
// init, starting, parking and, the most important, launching a slave thread at a
// split point are what this class does. All the access to shared thread data is
// done through this class, so that we avoid using global variables instead.
class ThreadsManager {
/* As long as the single ThreadsManager object is defined as a global we don't
need to explicitly initialize to zero its data members because variables with
static storage duration are automatically set to zero before enter main()
*/
public:
void init_threads();
void exit_threads();
int active_threads() const { return ActiveThreads; }
void set_active_threads(int newActiveThreads) { ActiveThreads = newActiveThreads; }
void incrementNodeCounter(int threadID) { threads[threadID].nodes++; }
void incrementBetaCounter(Color us, Depth d, int threadID) { threads[threadID].betaCutOffs[us] += unsigned(d); }
void resetNodeCounters();
void resetBetaCounters();
int64_t nodes_searched() const;
void get_beta_counters(Color us, int64_t& our, int64_t& their) const;
bool available_thread_exists(int master) const;
bool thread_is_available(int slave, int master) const;
bool thread_should_stop(int threadID) const;
void wake_sleeping_threads();
void put_threads_to_sleep();
void idle_loop(int threadID, SplitPoint* sp);
template <bool Fake>
void split(const Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue,
Depth depth, Move threatMove, bool mateThreat, int* moveCount, MovePicker* mp, bool pvNode);
private:
friend void poll();
int ActiveThreads;
volatile bool AllThreadsShouldExit, AllThreadsShouldSleep;
Thread threads[MAX_THREADS];
Lock MPLock, WaitLock;
#if !defined(_MSC_VER)
pthread_cond_t WaitCond;
#else
HANDLE SitIdleEvent[MAX_THREADS];
#endif
};
// RootMove struct is used for moves at the root at the tree. For each
2008-08-31 23:59:13 -06:00
// root move, we store a score, a node count, and a PV (really a refutation
// in the case of moves which fail low).
struct RootMove {
2008-08-31 23:59:13 -06:00
RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; }
// RootMove::operator<() is the comparison function used when
// sorting the moves. A move m1 is considered to be better
// than a move m2 if it has a higher score, or if the moves
// have equal score but m1 has the higher beta cut-off count.
bool operator<(const RootMove& m) const {
return score != m.score ? score < m.score : theirBeta <= m.theirBeta;
}
2008-08-31 23:59:13 -06:00
Move move;
Value score;
int64_t nodes, cumulativeNodes, ourBeta, theirBeta;
2008-08-31 23:59:13 -06:00
Move pv[PLY_MAX_PLUS_2];
};
// The RootMoveList class is essentially an array of RootMove objects, with
// a handful of methods for accessing the data in the individual moves.
class RootMoveList {
public:
RootMoveList(Position& pos, Move searchMoves[]);
int move_count() const { return count; }
Move get_move(int moveNum) const { return moves[moveNum].move; }
Value get_move_score(int moveNum) const { return moves[moveNum].score; }
void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; }
Move get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; }
int64_t get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; }
void set_move_nodes(int moveNum, int64_t nodes);
void set_beta_counters(int moveNum, int64_t our, int64_t their);
2008-08-31 23:59:13 -06:00
void set_move_pv(int moveNum, const Move pv[]);
void sort();
2008-08-31 23:59:13 -06:00
void sort_multipv(int n);
private:
static const int MaxRootMoves = 500;
RootMove moves[MaxRootMoves];
int count;
};
/// Adjustments
// Step 6. Razoring
// Maximum depth for razoring
const Depth RazorDepth = 4 * OnePly;
// Dynamic razoring margin based on depth
inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * int(d)); }
2008-08-31 23:59:13 -06:00
// Step 8. Null move search with verification search
// Null move margin. A null move search will not be done if the static
// evaluation of the position is more than NullMoveMargin below beta.
const Value NullMoveMargin = Value(0x200);
// Maximum depth for use of dynamic threat detection when null move fails low
const Depth ThreatDepth = 5 * OnePly;
// Step 9. Internal iterative deepening
2008-08-31 23:59:13 -06:00
// Minimum depth for use of internal iterative deepening
const Depth IIDDepth[2] = { 8 * OnePly /* non-PV */, 5 * OnePly /* PV */};
// At Non-PV nodes we do an internal iterative deepening search
// when the static evaluation is bigger then beta - IIDMargin.
2008-08-31 23:59:13 -06:00
const Value IIDMargin = Value(0x100);
// Step 11. Decide the new search depth
// Extensions. Configurable UCI options
// Array index 0 is used at non-PV nodes, index 1 at PV nodes.
Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2];
Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2];
// Minimum depth for use of singular extension
const Depth SingularExtensionDepth[2] = { 7 * OnePly /* non-PV */, 6 * OnePly /* PV */};
// If the TT move is at least SingularExtensionMargin better then the
// remaining ones we will extend it.
const Value SingularExtensionMargin = Value(0x20);
// Step 12. Futility pruning
// Futility margin for quiescence search
const Value FutilityMarginQS = Value(0x80);
// Futility lookup tables (initialized at startup) and their getter functions
int32_t FutilityMarginsMatrix[16][64]; // [depth][moveNumber]
int FutilityMoveCountArray[32]; // [depth]
inline Value futility_margin(Depth d, int mn) { return Value(d < 7 * OnePly ? FutilityMarginsMatrix[Max(d, 1)][Min(mn, 63)] : 2 * VALUE_INFINITE); }
inline int futility_move_count(Depth d) { return d < 16 * OnePly ? FutilityMoveCountArray[d] : 512; }
2008-08-31 23:59:13 -06:00
// Step 14. Reduced search
// Reduction lookup tables (initialized at startup) and their getter functions
int8_t ReductionMatrix[2][64][64]; // [pv][depth][moveNumber]
template <NodeType PV>
inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / 2, 63)][Min(mn, 63)]; }
// Common adjustments
// Search depth at iteration 1
const Depth InitialDepth = OnePly;
// Easy move margin. An easy move candidate must be at least this much
// better than the second best move.
const Value EasyMoveMargin = Value(0x200);
/// Global variables
// Iteration counter
2008-08-31 23:59:13 -06:00
int Iteration;
// Scores and number of times the best move changed for each iteration
Value ValueByIteration[PLY_MAX_PLUS_2];
2008-08-31 23:59:13 -06:00
int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
// Search window management
int AspirationDelta;
// MultiPV mode
int MultiPV;
2008-08-31 23:59:13 -06:00
// Time managment variables
int SearchStartTime, MaxNodes, MaxDepth, MaxSearchTime;
int AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime;
bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit;
bool FirstRootMove, AbortSearch, Quit, AspirationFailLow;
2008-08-31 23:59:13 -06:00
// Log file
bool UseLogFile;
2008-08-31 23:59:13 -06:00
std::ofstream LogFile;
// Multi-threads related variables
Depth MinimumSplitDepth;
int MaxThreadsPerSplitPoint;
ThreadsManager TM;
2008-08-31 23:59:13 -06:00
// Node counters, used only by thread[0] but try to keep in different cache
// lines (64 bytes each) from the heavy multi-thread read accessed variables.
int NodesSincePoll;
int NodesBetweenPolls = 30000;
// History table
History H;
/// Local functions
2008-08-31 23:59:13 -06:00
Value id_loop(const Position& pos, Move searchMoves[]);
Value root_search(Position& pos, SearchStack* ss, Move* pv, RootMoveList& rml, Value* alphaPtr, Value* betaPtr);
template <NodeType PvNode>
Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply);
template <NodeType PvNode>
Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply);
template <NodeType PvNode>
void sp_search(SplitPoint* sp, int threadID);
template <NodeType PvNode>
Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous);
bool connected_moves(const Position& pos, Move m1, Move m2);
bool value_is_mate(Value value);
Value value_to_tt(Value v, int ply);
Value value_from_tt(Value v, int ply);
bool move_is_killer(Move m, SearchStack* ss);
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
bool connected_threat(const Position& pos, Move m, Move threat);
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
void update_killers(Move m, SearchStack* ss);
void update_gains(const Position& pos, Move move, Value before, Value after);
2008-08-31 23:59:13 -06:00
int current_search_time();
std::string value_to_uci(Value v);
2008-08-31 23:59:13 -06:00
int nps();
void poll();
2008-08-31 23:59:13 -06:00
void ponderhit();
void wait_for_stop_or_ponderhit();
void init_ss_array(SearchStack* ss, int size);
void print_pv_info(const Position& pos, Move pv[], Value alpha, Value beta, Value value);
void insert_pv_in_tt(const Position& pos, Move pv[]);
void extract_pv_from_tt(const Position& pos, Move bestMove, Move pv[]);
2008-08-31 23:59:13 -06:00
#if !defined(_MSC_VER)
void *init_thread(void *threadID);
#else
DWORD WINAPI init_thread(LPVOID threadID);
#endif
2008-08-31 23:59:13 -06:00
}
////
//// Functions
////
/// init_threads(), exit_threads() and nodes_searched() are helpers to
/// give accessibility to some TM methods from outside of current file.
void init_threads() { TM.init_threads(); }
void exit_threads() { TM.exit_threads(); }
int64_t nodes_searched() { return TM.nodes_searched(); }
/// init_search() is called during startup. It initializes various lookup tables
void init_search() {
int d; // depth (OnePly == 2)
int hd; // half depth (OnePly == 1)
int mc; // moveCount
// Init reductions array
for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++)
{
double pvRed = 0.33 + log(double(hd)) * log(double(mc)) / 4.5;
double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0);
ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0);
}
// Init futility margins array
for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
FutilityMarginsMatrix[d][mc] = 112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45;
// Init futility move count array
for (d = 0; d < 32; d++)
FutilityMoveCountArray[d] = 3 + (1 << (3 * d / 8));
}
/// perft() is our utility to verify move generation is bug free. All the legal
/// moves up to given depth are generated and counted and the sum returned.
int perft(Position& pos, Depth depth)
{
StateInfo st;
Move move;
int sum = 0;
MovePicker mp(pos, MOVE_NONE, depth, H);
// If we are at the last ply we don't need to do and undo
// the moves, just to count them.
if (depth <= OnePly) // Replace with '<' to test also qsearch
{
while (mp.get_next_move()) sum++;
return sum;
}
// Loop through all legal moves
CheckInfo ci(pos);
while ((move = mp.get_next_move()) != MOVE_NONE)
{
pos.do_move(move, st, ci, pos.move_is_check(move, ci));
sum += perft(pos, depth - OnePly);
pos.undo_move(move);
}
return sum;
}
/// think() is the external interface to Stockfish's search, and is called when
/// the program receives the UCI 'go' command. It initializes various
/// search-related global variables, and calls root_search(). It returns false
/// when a quit command is received during the search.
2008-08-31 23:59:13 -06:00
bool think(const Position& pos, bool infinite, bool ponder, int time[], int increment[],
int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) {
2008-08-31 23:59:13 -06:00
// Initialize global search variables
StopOnPonderhit = AbortSearch = Quit = AspirationFailLow = false;
MaxSearchTime = AbsoluteMaxSearchTime = ExtraSearchTime = 0;
NodesSincePoll = 0;
TM.resetNodeCounters();
SearchStartTime = get_system_time();
ExactMaxTime = maxTime;
MaxDepth = maxDepth;
MaxNodes = maxNodes;
InfiniteSearch = infinite;
PonderSearch = ponder;
UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch;
// Look for a book move, only during games, not tests
if (UseTimeManagement && get_option_value_bool("OwnBook"))
{
if (get_option_value_string("Book File") != OpeningBook.file_name())
OpeningBook.open(get_option_value_string("Book File"));
Move bookMove = OpeningBook.get_move(pos, get_option_value_bool("Best Book Move"));
if (bookMove != MOVE_NONE)
{
if (PonderSearch)
wait_for_stop_or_ponderhit();
cout << "bestmove " << bookMove << endl;
return true;
}
2008-08-31 23:59:13 -06:00
}
// Read UCI option values
2008-08-31 23:59:13 -06:00
TT.set_size(get_option_value_int("Hash"));
if (button_was_pressed("Clear Hash"))
TT.clear();
CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)"));
CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)"));
SingleEvasionExtension[1] = Depth(get_option_value_int("Single Evasion Extension (PV nodes)"));
SingleEvasionExtension[0] = Depth(get_option_value_int("Single Evasion Extension (non-PV nodes)"));
PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)"));
PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)"));
PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)"));
PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)"));
PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)"));
PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)"));
MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly;
MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point");
MultiPV = get_option_value_int("MultiPV");
Chess960 = get_option_value_bool("UCI_Chess960");
UseLogFile = get_option_value_bool("Use Search Log");
if (UseLogFile)
LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app);
2008-08-31 23:59:13 -06:00
read_weights(pos.side_to_move());
// Set the number of active threads
int newActiveThreads = get_option_value_int("Threads");
if (newActiveThreads != TM.active_threads())
{
TM.set_active_threads(newActiveThreads);
init_eval(TM.active_threads());
2008-08-31 23:59:13 -06:00
}
// Wake up sleeping threads
TM.wake_sleeping_threads();
2008-08-31 23:59:13 -06:00
// Set thinking time
int myTime = time[pos.side_to_move()];
int myIncrement = increment[pos.side_to_move()];
if (UseTimeManagement)
{
if (!movesToGo) // Sudden death time control
{
if (myIncrement)
{
MaxSearchTime = myTime / 30 + myIncrement;
AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100);
}
else // Blitz game without increment
{
MaxSearchTime = myTime / 30;
AbsoluteMaxSearchTime = myTime / 8;
}
}
else // (x moves) / (y minutes)
{
if (movesToGo == 1)
{
MaxSearchTime = myTime / 2;
AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4);
}
else
{
MaxSearchTime = myTime / Min(movesToGo, 20);
AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3);
}
}
if (get_option_value_bool("Ponder"))
{
MaxSearchTime += MaxSearchTime / 4;
MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime);
}
2008-08-31 23:59:13 -06:00
}
// Set best NodesBetweenPolls interval to avoid lagging under
// heavy time pressure.
if (MaxNodes)
NodesBetweenPolls = Min(MaxNodes, 30000);
else if (myTime && myTime < 1000)
NodesBetweenPolls = 1000;
else if (myTime && myTime < 5000)
NodesBetweenPolls = 5000;
2008-08-31 23:59:13 -06:00
else
NodesBetweenPolls = 30000;
2008-08-31 23:59:13 -06:00
// Write search information to log file
if (UseLogFile)
LogFile << "Searching: " << pos.to_fen() << endl
<< "infinite: " << infinite
<< " ponder: " << ponder
<< " time: " << myTime
<< " increment: " << myIncrement
<< " moves to go: " << movesToGo << endl;
// We're ready to start thinking. Call the iterative deepening loop function
id_loop(pos, searchMoves);
2008-08-31 23:59:13 -06:00
if (UseLogFile)
LogFile.close();
TM.put_threads_to_sleep();
return !Quit;
2008-08-31 23:59:13 -06:00
}
namespace {
// id_loop() is the main iterative deepening loop. It calls root_search
2008-08-31 23:59:13 -06:00
// repeatedly with increasing depth until the allocated thinking time has
// been consumed, the user stops the search, or the maximum search depth is
// reached.
Value id_loop(const Position& pos, Move searchMoves[]) {
Position p(pos, pos.thread());
2008-08-31 23:59:13 -06:00
SearchStack ss[PLY_MAX_PLUS_2];
Move pv[PLY_MAX_PLUS_2];
Move EasyMove = MOVE_NONE;
Value value, alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
2008-08-31 23:59:13 -06:00
// Moves to search are verified, copied, scored and sorted
RootMoveList rml(p, searchMoves);
// Handle special case of searching on a mate/stale position
if (rml.move_count() == 0)
{
if (PonderSearch)
wait_for_stop_or_ponderhit();
return pos.is_check() ? -VALUE_MATE : VALUE_DRAW;
}
// Print RootMoveList startup scoring to the standard output,
// so to output information also for iteration 1.
cout << "info depth " << 1
<< "\ninfo depth " << 1
<< " score " << value_to_uci(rml.get_move_score(0))
<< " time " << current_search_time()
<< " nodes " << TM.nodes_searched()
<< " nps " << nps()
<< " pv " << rml.get_move(0) << "\n";
2008-08-31 23:59:13 -06:00
// Initialize
TT.new_search();
H.clear();
init_ss_array(ss, PLY_MAX_PLUS_2);
pv[0] = pv[1] = MOVE_NONE;
ValueByIteration[1] = rml.get_move_score(0);
2008-08-31 23:59:13 -06:00
Iteration = 1;
// Is one move significantly better than others after initial scoring ?
if ( rml.move_count() == 1
|| rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin)
EasyMove = rml.get_move(0);
2008-08-31 23:59:13 -06:00
// Iterative deepening loop
while (Iteration < PLY_MAX)
{
// Initialize iteration
Iteration++;
BestMoveChangesByIteration[Iteration] = 0;
cout << "info depth " << Iteration << endl;
// Calculate dynamic aspiration window based on previous iterations
if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN)
{
int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2];
int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3];
AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize
alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE);
beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE);
}
// Search to the current depth, rml is updated and sorted, alpha and beta could change
value = root_search(p, ss, pv, rml, &alpha, &beta);
// Write PV to transposition table, in case the relevant entries have
// been overwritten during the search.
insert_pv_in_tt(p, pv);
if (AbortSearch)
break; // Value cannot be trusted. Break out immediately!
//Save info about search result
ValueByIteration[Iteration] = value;
// Drop the easy move if differs from the new best move
if (pv[0] != EasyMove)
EasyMove = MOVE_NONE;
if (UseTimeManagement)
{
// Time to stop?
bool stopSearch = false;
// Stop search early if there is only a single legal move,
// we search up to Iteration 6 anyway to get a proper score.
if (Iteration >= 6 && rml.move_count() == 1)
stopSearch = true;
// Stop search early when the last two iterations returned a mate score
if ( Iteration >= 6
&& abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
&& abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
stopSearch = true;
// Stop search early if one move seems to be much better than the others
int64_t nodes = TM.nodes_searched();
if ( Iteration >= 8
&& EasyMove == pv[0]
&& ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100
&& current_search_time() > MaxSearchTime / 16)
||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100
&& current_search_time() > MaxSearchTime / 32)))
stopSearch = true;
// Add some extra time if the best move has changed during the last two iterations
if (Iteration > 5 && Iteration <= 50)
ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2)
+ BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3);
// Stop search if most of MaxSearchTime is consumed at the end of the
// iteration. We probably don't have enough time to search the first
// move at the next iteration anyway.
if (current_search_time() > ((MaxSearchTime + ExtraSearchTime) * 80) / 128)
stopSearch = true;
if (stopSearch)
{
if (PonderSearch)
StopOnPonderhit = true;
else
break;
}
2008-08-31 23:59:13 -06:00
}
if (MaxDepth && Iteration >= MaxDepth)
break;
2008-08-31 23:59:13 -06:00
}
// If we are pondering or in infinite search, we shouldn't print the
// best move before we are told to do so.
if (!AbortSearch && (PonderSearch || InfiniteSearch))
wait_for_stop_or_ponderhit();
2008-08-31 23:59:13 -06:00
else
// Print final search statistics
cout << "info nodes " << TM.nodes_searched()
<< " nps " << nps()
<< " time " << current_search_time() << endl;
2008-08-31 23:59:13 -06:00
// Print the best move and the ponder move to the standard output
if (pv[0] == MOVE_NONE)
{
pv[0] = rml.get_move(0);
pv[1] = MOVE_NONE;
}
assert(pv[0] != MOVE_NONE);
cout << "bestmove " << pv[0];
if (pv[1] != MOVE_NONE)
cout << " ponder " << pv[1];
cout << endl;
2008-08-31 23:59:13 -06:00
if (UseLogFile)
{
if (dbg_show_mean)
dbg_print_mean(LogFile);
if (dbg_show_hit_rate)
dbg_print_hit_rate(LogFile);
LogFile << "\nNodes: " << TM.nodes_searched()
<< "\nNodes/second: " << nps()
<< "\nBest move: " << move_to_san(p, pv[0]);
StateInfo st;
p.do_move(pv[0], st);
LogFile << "\nPonder move: "
<< move_to_san(p, pv[1]) // Works also with MOVE_NONE
<< endl;
2008-08-31 23:59:13 -06:00
}
return rml.get_move_score(0);
2008-08-31 23:59:13 -06:00
}
// root_search() is the function which searches the root node. It is
2008-08-31 23:59:13 -06:00
// similar to search_pv except that it uses a different move ordering
// scheme, prints some information to the standard output and handles
// the fail low/high loops.
2008-08-31 23:59:13 -06:00
Value root_search(Position& pos, SearchStack* ss, Move* pv, RootMoveList& rml, Value* alphaPtr, Value* betaPtr) {
EvalInfo ei;
StateInfo st;
CheckInfo ci(pos);
int64_t nodes;
Move move;
Depth depth, ext, newDepth;
Value value, alpha, beta;
bool isCheck, moveIsCheck, captureOrPromotion, dangerous;
int researchCountFH, researchCountFL;
researchCountFH = researchCountFL = 0;
alpha = *alphaPtr;
beta = *betaPtr;
isCheck = pos.is_check();
// Step 1. Initialize node (polling is omitted at root)
ss->currentMove = ss->bestMove = MOVE_NONE;
// Step 2. Check for aborted search (omitted at root)
// Step 3. Mate distance pruning (omitted at root)
// Step 4. Transposition table lookup (omitted at root)
// Step 5. Evaluate the position statically
// At root we do this only to get reference value for child nodes
ss->eval = isCheck ? VALUE_NONE : evaluate(pos, ei);
// Step 6. Razoring (omitted at root)
// Step 7. Static null move pruning (omitted at root)
// Step 8. Null move search with verification search (omitted at root)
// Step 9. Internal iterative deepening (omitted at root)
2008-08-31 23:59:13 -06:00
// Step extra. Fail low loop
// We start with small aspiration window and in case of fail low, we research
// with bigger window until we are not failing low anymore.
while (1)
{
// Sort the moves before to (re)search
rml.sort();
// Step 10. Loop through all moves in the root move list
for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
{
// This is used by time management
FirstRootMove = (i == 0);
// Save the current node count before the move is searched
nodes = TM.nodes_searched();
// Reset beta cut-off counters
TM.resetBetaCounters();
// Pick the next root move, and print the move and the move number to
// the standard output.
move = ss->currentMove = rml.get_move(i);
if (current_search_time() >= 1000)
cout << "info currmove " << move
<< " currmovenumber " << i + 1 << endl;
moveIsCheck = pos.move_is_check(move);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
// Step 11. Decide the new search depth
depth = (Iteration - 2) * OnePly + InitialDepth;
ext = extension<PV>(pos, move, captureOrPromotion, moveIsCheck, false, false, &dangerous);
newDepth = depth + ext;
// Step 12. Futility pruning (omitted at root)
// Step extra. Fail high loop
// If move fails high, we research with bigger window until we are not failing
// high anymore.
value = - VALUE_INFINITE;
while (1)
{
// Step 13. Make the move
pos.do_move(move, st, ci, moveIsCheck);
// Step extra. pv search
// We do pv search for first moves (i < MultiPV)
// and for fail high research (value > alpha)
if (i < MultiPV || value > alpha)
{
// Aspiration window is disabled in multi-pv case
if (MultiPV > 1)
alpha = -VALUE_INFINITE;
// Full depth PV search, done on first move or after a fail high
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
}
else
{
// Step 14. Reduced search
// if the move fails high will be re-searched at full depth
bool doFullDepthSearch = true;
if ( depth >= 3 * OnePly
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move))
{
ss->reduction = reduction<PV>(depth, i - MultiPV + 2);
if (ss->reduction)
{
assert(newDepth-ss->reduction >= OnePly);
// Reduced depth non-pv search using alpha as upperbound
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 1);
doFullDepthSearch = (value > alpha);
}
// The move failed high, but if reduction is very big we could
// face a false positive, retry with a less aggressive reduction,
// if the move fails high again then go with full depth search.
if (doFullDepthSearch && ss->reduction > 2 * OnePly)
{
assert(newDepth - OnePly >= OnePly);
ss->reduction = OnePly;
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 1);
doFullDepthSearch = (value > alpha);
}
ss->reduction = Depth(0); // Restore original reduction
}
// Step 15. Full depth search
if (doFullDepthSearch)
{
// Full depth non-pv search using alpha as upperbound
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, 1);
// If we are above alpha then research at same depth but as PV
// to get a correct score or eventually a fail high above beta.
if (value > alpha)
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
}
}
// Step 16. Undo move
pos.undo_move(move);
// Can we exit fail high loop ?
if (AbortSearch || value < beta)
break;
// We are failing high and going to do a research. It's important to update
// the score before research in case we run out of time while researching.
rml.set_move_score(i, value);
ss->bestMove = move;
extract_pv_from_tt(pos, move, pv);
rml.set_move_pv(i, pv);
// Print information to the standard output
print_pv_info(pos, pv, alpha, beta, value);
// Prepare for a research after a fail high, each time with a wider window
*betaPtr = beta = Min(beta + AspirationDelta * (1 << researchCountFH), VALUE_INFINITE);
researchCountFH++;
} // End of fail high loop
// Finished searching the move. If AbortSearch is true, the search
// was aborted because the user interrupted the search or because we
// ran out of time. In this case, the return value of the search cannot
// be trusted, and we break out of the loop without updating the best
// move and/or PV.
if (AbortSearch)
break;
// Remember beta-cutoff and searched nodes counts for this move. The
// info is used to sort the root moves for the next iteration.
int64_t our, their;
TM.get_beta_counters(pos.side_to_move(), our, their);
rml.set_beta_counters(i, our, their);
rml.set_move_nodes(i, TM.nodes_searched() - nodes);
assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
assert(value < beta);
// Step 17. Check for new best move
if (value <= alpha && i >= MultiPV)
rml.set_move_score(i, -VALUE_INFINITE);
else
{
// PV move or new best move!
// Update PV
rml.set_move_score(i, value);
ss->bestMove = move;
extract_pv_from_tt(pos, move, pv);
rml.set_move_pv(i, pv);
if (MultiPV == 1)
{
// We record how often the best move has been changed in each
// iteration. This information is used for time managment: When
// the best move changes frequently, we allocate some more time.
if (i > 0)
BestMoveChangesByIteration[Iteration]++;
// Print information to the standard output
print_pv_info(pos, pv, alpha, beta, value);
// Raise alpha to setup proper non-pv search upper bound
if (value > alpha)
alpha = value;
}
else // MultiPV > 1
{
rml.sort_multipv(i);
for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
{
cout << "info multipv " << j + 1
<< " score " << value_to_uci(rml.get_move_score(j))
<< " depth " << (j <= i ? Iteration : Iteration - 1)
<< " time " << current_search_time()
<< " nodes " << TM.nodes_searched()
<< " nps " << nps()
<< " pv ";
for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
cout << rml.get_move_pv(j, k) << " ";
cout << endl;
}
alpha = rml.get_move_score(Min(i, MultiPV - 1));
}
} // PV move or new best move
assert(alpha >= *alphaPtr);
AspirationFailLow = (alpha == *alphaPtr);
if (AspirationFailLow && StopOnPonderhit)
StopOnPonderhit = false;
}
// Can we exit fail low loop ?
if (AbortSearch || !AspirationFailLow)
break;
// Prepare for a research after a fail low, each time with a wider window
*alphaPtr = alpha = Max(alpha - AspirationDelta * (1 << researchCountFL), -VALUE_INFINITE);
researchCountFL++;
} // Fail low loop
// Sort the moves before to return
rml.sort();
return alpha;
2008-08-31 23:59:13 -06:00
}
// search<>() is the main search function for both PV and non-PV nodes
2008-08-31 23:59:13 -06:00
template <NodeType PvNode>
Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) {
2008-08-31 23:59:13 -06:00
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta > alpha && beta <= VALUE_INFINITE);
assert(PvNode || alpha == beta - 1);
assert(ply > 0 && ply < PLY_MAX);
assert(pos.thread() >= 0 && pos.thread() < TM.active_threads());
2008-08-31 23:59:13 -06:00
Move movesSearched[256];
EvalInfo ei;
StateInfo st;
const TTEntry* tte;
Key posKey;
Move ttMove, move, excludedMove, threatMove;
Depth ext, newDepth;
Value bestValue, value, oldAlpha;
Value refinedValue, nullValue, futilityValueScaled; // Non-PV specific
bool isCheck, singleEvasion, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous;
bool mateThreat = false;
int moveCount = 0;
int threadID = pos.thread();
refinedValue = bestValue = value = -VALUE_INFINITE;
oldAlpha = alpha;
// Step 1. Initialize node and poll. Polling can abort search
TM.incrementNodeCounter(threadID);
ss->currentMove = ss->bestMove = threatMove = MOVE_NONE;
(ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE;
if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls)
{
NodesSincePoll = 0;
poll();
}
2008-08-31 23:59:13 -06:00
// Step 2. Check for aborted search and immediate draw
if (AbortSearch || TM.thread_should_stop(threadID))
return Value(0);
if (pos.is_draw() || ply >= PLY_MAX - 1)
return VALUE_DRAW;
2008-08-31 23:59:13 -06:00
// Step 3. Mate distance pruning
2008-08-31 23:59:13 -06:00
alpha = Max(value_mated_in(ply), alpha);
beta = Min(value_mate_in(ply+1), beta);
if (alpha >= beta)
return alpha;
2008-08-31 23:59:13 -06:00
// Step 4. Transposition table lookup
// We don't want the score of a partial search to overwrite a previous full search
// TT value, so we use a different position key in case of an excluded move exists.
excludedMove = ss->excludedMove;
posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
tte = TT.retrieve(posKey);
ttMove = (tte ? tte->move() : MOVE_NONE);
// At PV nodes, we don't use the TT for pruning, but only for move ordering.
// This is to avoid problems in the following areas:
//
// * Repetition draw detection
// * Fifty move rule detection
// * Searching for a mate
// * Printing of full PV line
if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
{
// Refresh tte entry to avoid aging
TT.store(posKey, tte->value(), tte->type(), tte->depth(), ttMove, tte->static_value(), tte->king_danger());
ss->bestMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
2008-08-31 23:59:13 -06:00
}
// Step 5. Evaluate the position statically
// At PV nodes we do this only to update gain statistics
isCheck = pos.is_check();
if (!isCheck)
{
if (tte)
{
assert(tte->static_value() != VALUE_NONE);
ss->eval = tte->static_value();
ei.kingDanger[pos.side_to_move()] = tte->king_danger();
}
else
{
ss->eval = evaluate(pos, ei);
TT.store(posKey, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]);
}
refinedValue = refine_eval(tte, ss->eval, ply); // Enhance accuracy with TT value if possible
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
}
else
ss->eval = VALUE_NONE;
2008-08-31 23:59:13 -06:00
// Step 6. Razoring (is omitted in PV nodes)
if ( !PvNode
&& depth < RazorDepth
&& !isCheck
&& refinedValue < beta - razor_margin(depth)
&& ttMove == MOVE_NONE
&& (ss-1)->currentMove != MOVE_NULL
&& !value_is_mate(beta)
&& !pos.has_pawn_on_7th(pos.side_to_move()))
{
Value rbeta = beta - razor_margin(depth);
Value v = qsearch<NonPV>(pos, ss, rbeta-1, rbeta, Depth(0), ply);
if (v < rbeta)
// Logically we should return (v + razor_margin(depth)), but
// surprisingly this did slightly weaker in tests.
return v;
}
// Step 7. Static null move pruning (is omitted in PV nodes)
// We're betting that the opponent doesn't have a move that will reduce
// the score by more than futility_margin(depth) if we do a null move.
if ( !PvNode
&& !ss->skipNullMove
&& depth < RazorDepth
&& refinedValue >= beta + futility_margin(depth, 0)
&& !isCheck
&& !value_is_mate(beta)
&& pos.non_pawn_material(pos.side_to_move()))
return refinedValue - futility_margin(depth, 0);
// Step 8. Null move search with verification search (is omitted in PV nodes)
// When we jump directly to qsearch() we do a null move only if static value is
// at least beta. Otherwise we do a null move if static value is not more than
// NullMoveMargin under beta.
if ( !PvNode
&& !ss->skipNullMove
&& depth > OnePly
&& refinedValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0)
&& !isCheck
&& !value_is_mate(beta)
&& pos.non_pawn_material(pos.side_to_move()))
{
ss->currentMove = MOVE_NULL;
// Null move dynamic reduction based on depth
int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0);
// Null move dynamic reduction based on value
if (refinedValue - beta > PawnValueMidgame)
R++;
pos.do_null_move(st);
(ss+1)->skipNullMove = true;
nullValue = depth-R*OnePly < OnePly ? -qsearch<NonPV>(pos, ss+1, -beta, -alpha, Depth(0), ply+1)
: - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R*OnePly, ply+1);
(ss+1)->skipNullMove = false;
pos.undo_null_move();
if (nullValue >= beta)
{
// Do not return unproven mate scores
if (nullValue >= value_mate_in(PLY_MAX))
nullValue = beta;
if (depth < 6 * OnePly)
return nullValue;
// Do verification search at high depths
ss->skipNullMove = true;
Value v = search<NonPV>(pos, ss, alpha, beta, depth-R*OnePly, ply);
ss->skipNullMove = false;
if (v >= beta)
return nullValue;
}
else
{
// The null move failed low, which means that we may be faced with
// some kind of threat. If the previous move was reduced, check if
// the move that refuted the null move was somehow connected to the
// move which was reduced. If a connection is found, return a fail
// low score (which will cause the reduced move to fail high in the
// parent node, which will trigger a re-search with full depth).
if (nullValue == value_mated_in(ply + 2))
mateThreat = true;
threatMove = (ss+1)->bestMove;
if ( depth < ThreatDepth
&& (ss-1)->reduction
&& connected_moves(pos, (ss-1)->currentMove, threatMove))
return beta - 1;
}
}
2008-08-31 23:59:13 -06:00
// Step 9. Internal iterative deepening
if ( depth >= IIDDepth[PvNode]
&& ttMove == MOVE_NONE
&& (PvNode || (!isCheck && ss->eval >= beta - IIDMargin)))
{
Depth d = (PvNode ? depth - 2 * OnePly : depth / 2);
ss->skipNullMove = true;
search<PvNode>(pos, ss, alpha, beta, d, ply);
ss->skipNullMove = false;
ttMove = ss->bestMove;
tte = TT.retrieve(posKey);
2008-08-31 23:59:13 -06:00
}
// Expensive mate threat detection (only for PV nodes)
if (PvNode)
mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move()));
// Initialize a MovePicker object for the current position
MovePicker mp = MovePicker(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta));
CheckInfo ci(pos);
singleEvasion = isCheck && mp.number_of_evasions() == 1;
singularExtensionNode = depth >= SingularExtensionDepth[PvNode]
&& tte && tte->move()
&& !excludedMove // Do not allow recursive singular extension search
&& is_lower_bound(tte->type())
&& tte->depth() >= depth - 3 * OnePly;
2008-08-31 23:59:13 -06:00
// Avoid to do an expensive singular extension search on nodes where
// such search had already failed in the past.
if ( !PvNode
&& singularExtensionNode
&& depth < SingularExtensionDepth[PvNode] + 5 * OnePly)
{
TTEntry* ttx = TT.retrieve(pos.get_exclusion_key());
if (ttx && is_lower_bound(ttx->type()))
singularExtensionNode = false;
}
// Step 10. Loop through moves
// Loop through all legal moves until no moves remain or a beta cutoff occurs
while ( bestValue < beta
&& (move = mp.get_next_move()) != MOVE_NONE
&& !TM.thread_should_stop(threadID))
{
assert(move_is_ok(move));
if (move == excludedMove)
continue;
moveIsCheck = pos.move_is_check(move, ci);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
2008-08-31 23:59:13 -06:00
// Step 11. Decide the new search depth
ext = extension<PvNode>(pos, move, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
// Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s),
// and just one fails high on (alpha, beta), then that move is singular and should be extended.
// To verify this we do a reduced search on all the other moves but the ttMove, if result is
// lower then ttValue minus a margin then we extend ttMove.
if ( singularExtensionNode
&& move == tte->move()
&& ext < OnePly)
{
Value ttValue = value_from_tt(tte->value(), ply);
if (abs(ttValue) < VALUE_KNOWN_WIN)
{
Value b = ttValue - SingularExtensionMargin;
ss->excludedMove = move;
ss->skipNullMove = true;
Value v = search<NonPV>(pos, ss, b - 1, b, depth / 2, ply);
ss->skipNullMove = false;
ss->excludedMove = MOVE_NONE;
if (v < b)
ext = OnePly;
}
}
newDepth = depth - OnePly + ext;
2008-08-31 23:59:13 -06:00
// Update current move (this must be done after singular extension search)
movesSearched[moveCount++] = ss->currentMove = move;
// Step 12. Futility pruning (is omitted in PV nodes)
if ( !PvNode
&& !captureOrPromotion
&& !isCheck
&& !dangerous
&& move != ttMove
&& !move_is_castle(move))
{
// Move count based pruning
if ( moveCount >= futility_move_count(depth)
&& !(threatMove && connected_threat(pos, move, threatMove))
&& bestValue > value_mated_in(PLY_MAX))
continue;
2008-08-31 23:59:13 -06:00
// Value based pruning
// We illogically ignore reduction condition depth >= 3*OnePly for predicted depth,
// but fixing this made program slightly weaker.
Depth predictedDepth = newDepth - reduction<NonPV>(depth, moveCount);
futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount)
+ H.gain(pos.piece_on(move_from(move)), move_to(move));
if (futilityValueScaled < beta)
{
if (futilityValueScaled > bestValue)
bestValue = futilityValueScaled;
continue;
2008-08-31 23:59:13 -06:00
}
}
// Step 13. Make the move
pos.do_move(move, st, ci, moveIsCheck);
// Step extra. pv search (only in PV nodes)
// The first move in list is the expected PV
if (PvNode && moveCount == 1)
value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -beta, -alpha, Depth(0), ply+1)
: - search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1);
else
{
// Step 14. Reduced depth search
// If the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
if ( depth >= 3 * OnePly
&& !captureOrPromotion
&& !dangerous
&& !move_is_castle(move)
&& !move_is_killer(move, ss))
{
ss->reduction = reduction<PvNode>(depth, moveCount);
if (ss->reduction)
{
Depth d = newDepth - ss->reduction;
value = d < OnePly ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, Depth(0), ply+1)
: - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, ply+1);
doFullDepthSearch = (value > alpha);
}
// The move failed high, but if reduction is very big we could
// face a false positive, retry with a less aggressive reduction,
// if the move fails high again then go with full depth search.
if (doFullDepthSearch && ss->reduction > 2 * OnePly)
{
assert(newDepth - OnePly >= OnePly);
ss->reduction = OnePly;
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, ply+1);
doFullDepthSearch = (value > alpha);
}
ss->reduction = Depth(0); // Restore original reduction
}
// Step 15. Full depth search
if (doFullDepthSearch)
{
value = newDepth < OnePly ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, Depth(0), ply+1)
: - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, ply+1);
// Step extra. pv search (only in PV nodes)
// Search only for possible new PV nodes, if instead value >= beta then
// parent node fails low with value <= alpha and tries another move.
if (PvNode && value > alpha && value < beta)
value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -beta, -alpha, Depth(0), ply+1)
: - search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1);
}
2008-08-31 23:59:13 -06:00
}
// Step 16. Undo move
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 17. Check for new best move
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
if (PvNode && value < beta) // This guarantees that always: alpha < beta
alpha = value;
if (value == value_mate_in(ply + 1))
ss->mateKiller = move;
ss->bestMove = move;
}
2008-08-31 23:59:13 -06:00
}
// Step 18. Check for split
if ( depth >= MinimumSplitDepth
&& TM.active_threads() > 1
&& bestValue < beta
&& TM.available_thread_exists(threadID)
&& !AbortSearch
&& !TM.thread_should_stop(threadID)
&& Iteration <= 99)
TM.split<FakeSplit>(pos, ss, ply, &alpha, beta, &bestValue, depth,
threatMove, mateThreat, &moveCount, &mp, PvNode);
2008-08-31 23:59:13 -06:00
}
// Step 19. Check for mate and stalemate
// All legal moves have been searched and if there are
// no legal moves, it must be mate or stalemate.
// If one move was excluded return fail low score.
if (!moveCount)
return excludedMove ? oldAlpha : (isCheck ? value_mated_in(ply) : VALUE_DRAW);
2008-08-31 23:59:13 -06:00
// Step 20. Update tables
2008-08-31 23:59:13 -06:00
// If the search is not aborted, update the transposition table,
// history counters, and killer moves.
if (AbortSearch || TM.thread_should_stop(threadID))
return bestValue;
ValueType f = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT);
move = (bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove);
TT.store(posKey, value_to_tt(bestValue, ply), f, depth, move, ss->eval, ei.kingDanger[pos.side_to_move()]);
// Update killers and history only for non capture moves that fails high
if (bestValue >= beta)
{
TM.incrementBetaCounter(pos.side_to_move(), depth, threadID);
if (!pos.move_is_capture_or_promotion(move))
{
update_history(pos, move, depth, movesSearched, moveCount);
update_killers(move, ss);
2008-08-31 23:59:13 -06:00
}
}
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
return bestValue;
}
2008-08-31 23:59:13 -06:00
// qsearch() is the quiescence search function, which is called by the main
// search function when the remaining depth is zero (or, to be more precise,
// less than OnePly).
template <NodeType PvNode>
Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) {
2008-08-31 23:59:13 -06:00
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(PvNode || alpha == beta - 1);
2008-08-31 23:59:13 -06:00
assert(depth <= 0);
assert(ply > 0 && ply < PLY_MAX);
assert(pos.thread() >= 0 && pos.thread() < TM.active_threads());
2008-08-31 23:59:13 -06:00
EvalInfo ei;
StateInfo st;
Move ttMove, move;
Value bestValue, value, futilityValue, futilityBase;
bool isCheck, deepChecks, enoughMaterial, moveIsCheck, evasionPrunable;
const TTEntry* tte;
Value oldAlpha = alpha;
TM.incrementNodeCounter(pos.thread());
ss->bestMove = ss->currentMove = MOVE_NONE;
2008-08-31 23:59:13 -06:00
// Check for an instant draw or maximum ply reached
if (pos.is_draw() || ply >= PLY_MAX - 1)
return VALUE_DRAW;
2008-08-31 23:59:13 -06:00
// Transposition table lookup. At PV nodes, we don't use the TT for
// pruning, but only for move ordering.
tte = TT.retrieve(pos.get_key());
ttMove = (tte ? tte->move() : MOVE_NONE);
if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
{
ss->bestMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
}
isCheck = pos.is_check();
// Evaluate the position statically
if (isCheck)
{
bestValue = futilityBase = -VALUE_INFINITE;
ss->eval = VALUE_NONE;
deepChecks = enoughMaterial = false;
}
else
{
if (tte)
{
assert(tte->static_value() != VALUE_NONE);
ei.kingDanger[pos.side_to_move()] = tte->king_danger();
bestValue = tte->static_value();
}
else
bestValue = evaluate(pos, ei);
ss->eval = bestValue;
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
{
if (!tte)
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]);
return bestValue;
}
if (PvNode && bestValue > alpha)
alpha = bestValue;
// If we are near beta then try to get a cutoff pushing checks a bit further
deepChecks = (depth == -OnePly && bestValue >= beta - PawnValueMidgame / 8);
2008-08-31 23:59:13 -06:00
// Futility pruning parameters, not needed when in check
futilityBase = bestValue + FutilityMarginQS + ei.kingDanger[pos.side_to_move()];
enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
}
2008-08-31 23:59:13 -06:00
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions and checks (only if depth == 0 or depth == -OnePly
// and we are near beta) will be generated.
MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H);
CheckInfo ci(pos);
2008-08-31 23:59:13 -06:00
// Loop through the moves until no moves remain or a beta cutoff occurs
while ( alpha < beta
&& (move = mp.get_next_move()) != MOVE_NONE)
{
assert(move_is_ok(move));
moveIsCheck = pos.move_is_check(move, ci);
2008-08-31 23:59:13 -06:00
// Futility pruning
if ( !PvNode
&& !isCheck
&& !moveIsCheck
&& move != ttMove
&& enoughMaterial
&& !move_is_promotion(move)
&& !pos.move_is_passed_pawn_push(move))
{
futilityValue = futilityBase
+ pos.endgame_value_of_piece_on(move_to(move))
+ (move_is_ep(move) ? PawnValueEndgame : Value(0));
if (futilityValue < alpha)
{
if (futilityValue > bestValue)
bestValue = futilityValue;
continue;
}
2008-08-31 23:59:13 -06:00
}
// Detect blocking evasions that are candidate to be pruned
evasionPrunable = isCheck
&& bestValue > value_mated_in(PLY_MAX)
&& !pos.move_is_capture(move)
&& pos.type_of_piece_on(move_from(move)) != KING
&& !pos.can_castle(pos.side_to_move());
// Don't search moves with negative SEE values
if ( !PvNode
&& (!isCheck || evasionPrunable)
&& move != ttMove
&& !move_is_promotion(move)
&& pos.see_sign(move) < 0)
continue;
2008-08-31 23:59:13 -06:00
// Update current move
ss->currentMove = move;
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
value = -qsearch<PvNode>(pos, ss+1, -beta, -alpha, depth-OnePly, ply+1);
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
alpha = value;
ss->bestMove = move;
}
}
2008-08-31 23:59:13 -06:00
}
// All legal moves have been searched. A special case: If we're in check
// and no legal moves were found, it is checkmate.
if (isCheck && bestValue == -VALUE_INFINITE)
return value_mated_in(ply);
2008-08-31 23:59:13 -06:00
// Update transposition table
Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1));
ValueType f = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), f, d, ss->bestMove, ss->eval, ei.kingDanger[pos.side_to_move()]);
// Update killers only for checking moves that fails high
if ( bestValue >= beta
&& !pos.move_is_capture_or_promotion(ss->bestMove))
update_killers(ss->bestMove, ss);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
return bestValue;
}
// sp_search() is used to search from a split point. This function is called
// by each thread working at the split point. It is similar to the normal
// search() function, but simpler. Because we have already probed the hash
// table, done a null move search, and searched the first move before
// splitting, we don't have to repeat all this work in sp_search(). We
// also don't need to store anything to the hash table here: This is taken
// care of after we return from the split point.
template <NodeType PvNode>
void sp_search(SplitPoint* sp, int threadID) {
assert(threadID >= 0 && threadID < TM.active_threads());
assert(TM.active_threads() > 1);
StateInfo st;
2008-08-31 23:59:13 -06:00
Move move;
Depth ext, newDepth;
Value value;
Value futilityValueScaled; // NonPV specific
bool isCheck, moveIsCheck, captureOrPromotion, dangerous;
int moveCount;
value = -VALUE_INFINITE;
Position pos(*sp->pos, threadID);
CheckInfo ci(pos);
SearchStack* ss = sp->sstack[threadID] + 1;
isCheck = pos.is_check();
// Step 10. Loop through moves
// Loop through all legal moves until no moves remain or a beta cutoff occurs
lock_grab(&(sp->lock));
while ( sp->bestValue < sp->beta
&& (move = sp->mp->get_next_move()) != MOVE_NONE
&& !TM.thread_should_stop(threadID))
{
moveCount = ++sp->moveCount;
lock_release(&(sp->lock));
assert(move_is_ok(move));
2008-08-31 23:59:13 -06:00
moveIsCheck = pos.move_is_check(move, ci);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
2008-08-31 23:59:13 -06:00
// Step 11. Decide the new search depth
ext = extension<PvNode>(pos, move, captureOrPromotion, moveIsCheck, false, sp->mateThreat, &dangerous);
newDepth = sp->depth - OnePly + ext;
2008-08-31 23:59:13 -06:00
// Update current move
ss->currentMove = move;
// Step 12. Futility pruning (is omitted in PV nodes)
if ( !PvNode
&& !captureOrPromotion
&& !isCheck
&& !dangerous
&& !move_is_castle(move))
{
// Move count based pruning
if ( moveCount >= futility_move_count(sp->depth)
&& !(sp->threatMove && connected_threat(pos, move, sp->threatMove))
&& sp->bestValue > value_mated_in(PLY_MAX))
{
lock_grab(&(sp->lock));
continue;
}
// Value based pruning
Depth predictedDepth = newDepth - reduction<NonPV>(sp->depth, moveCount);
futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount)
+ H.gain(pos.piece_on(move_from(move)), move_to(move));
if (futilityValueScaled < sp->beta)
{
lock_grab(&(sp->lock));
if (futilityValueScaled > sp->bestValue)
sp->bestValue = futilityValueScaled;
continue;
}
}
2008-08-31 23:59:13 -06:00
// Step 13. Make the move
pos.do_move(move, st, ci, moveIsCheck);
// Step 14. Reduced search
// If the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
if ( !captureOrPromotion
&& !dangerous
&& !move_is_castle(move)
&& !move_is_killer(move, ss))
{
ss->reduction = reduction<PvNode>(sp->depth, moveCount);
if (ss->reduction)
{
Value localAlpha = sp->alpha;
Depth d = newDepth - ss->reduction;
value = d < OnePly ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0), sp->ply+1)
: - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, d, sp->ply+1);
doFullDepthSearch = (value > localAlpha);
}
// The move failed high, but if reduction is very big we could
// face a false positive, retry with a less aggressive reduction,
// if the move fails high again then go with full depth search.
if (doFullDepthSearch && ss->reduction > 2 * OnePly)
{
assert(newDepth - OnePly >= OnePly);
ss->reduction = OnePly;
Value localAlpha = sp->alpha;
value = -search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction, sp->ply+1);
doFullDepthSearch = (value > localAlpha);
}
ss->reduction = Depth(0); // Restore original reduction
2008-08-31 23:59:13 -06:00
}
// Step 15. Full depth search
if (doFullDepthSearch)
{
Value localAlpha = sp->alpha;
value = newDepth < OnePly ? -qsearch<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0), sp->ply+1)
: - search<NonPV>(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth, sp->ply+1);
// Step extra. pv search (only in PV nodes)
// Search only for possible new PV nodes, if instead value >= beta then
// parent node fails low with value <= alpha and tries another move.
if (PvNode && value > localAlpha && value < sp->beta)
value = newDepth < OnePly ? -qsearch<PV>(pos, ss+1, -sp->beta, -sp->alpha, Depth(0), sp->ply+1)
: - search<PV>(pos, ss+1, -sp->beta, -sp->alpha, newDepth, sp->ply+1);
2008-08-31 23:59:13 -06:00
}
// Step 16. Undo move
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 17. Check for new best move
lock_grab(&(sp->lock));
if (value > sp->bestValue && !TM.thread_should_stop(threadID))
{
sp->bestValue = value;
if (sp->bestValue > sp->alpha)
{
if (!PvNode || value >= sp->beta)
sp->stopRequest = true;
if (PvNode && value < sp->beta) // This guarantees that always: sp->alpha < sp->beta
sp->alpha = value;
sp->parentSstack->bestMove = ss->bestMove = move;
}
2008-08-31 23:59:13 -06:00
}
}
/* Here we have the lock still grabbed */
2008-08-31 23:59:13 -06:00
sp->slaves[threadID] = 0;
lock_release(&(sp->lock));
}
2008-08-31 23:59:13 -06:00
// connected_moves() tests whether two moves are 'connected' in the sense
// that the first move somehow made the second move possible (for instance
// if the moving piece is the same in both moves). The first move is assumed
// to be the move that was made to reach the current position, while the
// second move is assumed to be a move from the current position.
2008-08-31 23:59:13 -06:00
bool connected_moves(const Position& pos, Move m1, Move m2) {
2008-08-31 23:59:13 -06:00
Square f1, t1, f2, t2;
Piece p;
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m1));
assert(move_is_ok(m2));
if (m2 == MOVE_NONE)
return false;
2008-08-31 23:59:13 -06:00
// Case 1: The moving piece is the same in both moves
2008-08-31 23:59:13 -06:00
f2 = move_from(m2);
t1 = move_to(m1);
if (f2 == t1)
return true;
2008-08-31 23:59:13 -06:00
// Case 2: The destination square for m2 was vacated by m1
2008-08-31 23:59:13 -06:00
t2 = move_to(m2);
f1 = move_from(m1);
if (t2 == f1)
return true;
2008-08-31 23:59:13 -06:00
// Case 3: Moving through the vacated square
if ( piece_is_slider(pos.piece_on(f2))
&& bit_is_set(squares_between(f2, t2), f1))
2008-08-31 23:59:13 -06:00
return true;
// Case 4: The destination square for m2 is defended by the moving piece in m1
p = pos.piece_on(t1);
if (bit_is_set(pos.attacks_from(p, t1), t2))
return true;
2008-08-31 23:59:13 -06:00
// Case 5: Discovered check, checking piece is the piece moved in m1
if ( piece_is_slider(p)
&& bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
&& !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2))
{
// discovered_check_candidates() works also if the Position's side to
// move is the opposite of the checking piece.
Color them = opposite_color(pos.side_to_move());
Bitboard dcCandidates = pos.discovered_check_candidates(them);
if (bit_is_set(dcCandidates, f2))
return true;
2008-08-31 23:59:13 -06:00
}
return false;
}
// value_is_mate() checks if the given value is a mate one eventually
// compensated for the ply.
bool value_is_mate(Value value) {
assert(abs(value) <= VALUE_INFINITE);
return value <= value_mated_in(PLY_MAX)
|| value >= value_mate_in(PLY_MAX);
}
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
// "plies to mate from the current ply". Non-mate scores are unchanged.
// The function is called before storing a value to the transposition table.
Value value_to_tt(Value v, int ply) {
if (v >= value_mate_in(PLY_MAX))
return v + ply;
if (v <= value_mated_in(PLY_MAX))
return v - ply;
return v;
}
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score from
// the transposition table to a mate score corrected for the current ply.
Value value_from_tt(Value v, int ply) {
if (v >= value_mate_in(PLY_MAX))
return v - ply;
if (v <= value_mated_in(PLY_MAX))
return v + ply;
return v;
}
// move_is_killer() checks if the given move is among the killer moves
bool move_is_killer(Move m, SearchStack* ss) {
if (ss->killers[0] == m || ss->killers[1] == m)
return true;
return false;
}
2008-08-31 23:59:13 -06:00
// extension() decides whether a move should be searched with normal depth,
// or with extended depth. Certain classes of moves (checking moves, in
// particular) are searched with bigger depth than ordinary moves and in
// any case are marked as 'dangerous'. Note that also if a move is not
// extended, as example because the corresponding UCI option is set to zero,
// the move is marked as 'dangerous' so, at least, we avoid to prune it.
template <NodeType PvNode>
Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck,
bool singleEvasion, bool mateThreat, bool* dangerous) {
assert(m != MOVE_NONE);
2008-08-31 23:59:13 -06:00
Depth result = Depth(0);
*dangerous = moveIsCheck | singleEvasion | mateThreat;
2008-08-31 23:59:13 -06:00
if (*dangerous)
{
if (moveIsCheck && pos.see_sign(m) >= 0)
result += CheckExtension[PvNode];
if (singleEvasion)
result += SingleEvasionExtension[PvNode];
if (mateThreat)
result += MateThreatExtension[PvNode];
}
if (pos.type_of_piece_on(move_from(m)) == PAWN)
{
Color c = pos.side_to_move();
if (relative_rank(c, move_to(m)) == RANK_7)
{
result += PawnPushTo7thExtension[PvNode];
*dangerous = true;
}
if (pos.pawn_is_passed(c, move_to(m)))
{
result += PassedPawnExtension[PvNode];
*dangerous = true;
}
}
if ( captureOrPromotion
&& pos.type_of_piece_on(move_to(m)) != PAWN
&& ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
- pos.midgame_value_of_piece_on(move_to(m)) == Value(0))
&& !move_is_promotion(m)
&& !move_is_ep(m))
{
result += PawnEndgameExtension[PvNode];
*dangerous = true;
}
if ( PvNode
&& captureOrPromotion
&& pos.type_of_piece_on(move_to(m)) != PAWN
&& pos.see_sign(m) >= 0)
{
result += OnePly/2;
*dangerous = true;
}
2008-08-31 23:59:13 -06:00
return Min(result, OnePly);
}
// connected_threat() tests whether it is safe to forward prune a move or if
// is somehow coonected to the threat move returned by null search.
2008-08-31 23:59:13 -06:00
bool connected_threat(const Position& pos, Move m, Move threat) {
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
assert(threat && move_is_ok(threat));
2008-08-31 23:59:13 -06:00
assert(!pos.move_is_check(m));
assert(!pos.move_is_capture_or_promotion(m));
2008-08-31 23:59:13 -06:00
assert(!pos.move_is_passed_pawn_push(m));
Square mfrom, mto, tfrom, tto;
2008-08-31 23:59:13 -06:00
mfrom = move_from(m);
mto = move_to(m);
tfrom = move_from(threat);
tto = move_to(threat);
// Case 1: Don't prune moves which move the threatened piece
if (mfrom == tto)
return true;
2008-08-31 23:59:13 -06:00
// Case 2: If the threatened piece has value less than or equal to the
2008-08-31 23:59:13 -06:00
// value of the threatening piece, don't prune move which defend it.
if ( pos.move_is_capture(threat)
&& ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
|| pos.type_of_piece_on(tfrom) == KING)
&& pos.move_attacks_square(m, tto))
return true;
2008-08-31 23:59:13 -06:00
// Case 3: If the moving piece in the threatened move is a slider, don't
2008-08-31 23:59:13 -06:00
// prune safe moves which block its ray.
if ( piece_is_slider(pos.piece_on(tfrom))
&& bit_is_set(squares_between(tfrom, tto), mto)
&& pos.see_sign(m) >= 0)
return true;
2008-08-31 23:59:13 -06:00
return false;
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
// ok_to_use_TT() returns true if a transposition table score
// can be used at a given point in search.
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
Value v = value_from_tt(tte->value(), ply);
return ( tte->depth() >= depth
|| v >= Max(value_mate_in(PLY_MAX), beta)
|| v < Min(value_mated_in(PLY_MAX), beta))
&& ( (is_lower_bound(tte->type()) && v >= beta)
|| (is_upper_bound(tte->type()) && v < beta));
}
// refine_eval() returns the transposition table score if
// possible otherwise falls back on static position evaluation.
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) {
if (!tte)
return defaultEval;
Value v = value_from_tt(tte->value(), ply);
if ( (is_lower_bound(tte->type()) && v >= defaultEval)
|| (is_upper_bound(tte->type()) && v < defaultEval))
return v;
return defaultEval;
}
// update_history() registers a good move that produced a beta-cutoff
// in history and marks as failures all the other moves of that ply.
void update_history(const Position& pos, Move move, Depth depth,
Move movesSearched[], int moveCount) {
Move m;
H.success(pos.piece_on(move_from(move)), move_to(move), depth);
for (int i = 0; i < moveCount - 1; i++)
{
m = movesSearched[i];
assert(m != move);
if (!pos.move_is_capture_or_promotion(m))
H.failure(pos.piece_on(move_from(m)), move_to(m), depth);
}
}
// update_killers() add a good move that produced a beta-cutoff
// among the killer moves of that ply.
void update_killers(Move m, SearchStack* ss) {
if (m == ss->killers[0])
return;
ss->killers[1] = ss->killers[0];
ss->killers[0] = m;
}
// update_gains() updates the gains table of a non-capture move given
// the static position evaluation before and after the move.
void update_gains(const Position& pos, Move m, Value before, Value after) {
if ( m != MOVE_NULL
&& before != VALUE_NONE
&& after != VALUE_NONE
&& pos.captured_piece() == NO_PIECE_TYPE
&& !move_is_castle(m)
&& !move_is_promotion(m))
H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
}
2008-08-31 23:59:13 -06:00
// current_search_time() returns the number of milliseconds which have passed
// since the beginning of the current search.
int current_search_time() {
2008-08-31 23:59:13 -06:00
return get_system_time() - SearchStartTime;
}
// value_to_uci() converts a value to a string suitable for use with the UCI protocol
std::string value_to_uci(Value v) {
std::stringstream s;
if (abs(v) < VALUE_MATE - PLY_MAX * OnePly)
s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to pawn = 100
else
s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2 );
return s.str();
}
2008-08-31 23:59:13 -06:00
// nps() computes the current nodes/second count.
int nps() {
2008-08-31 23:59:13 -06:00
int t = current_search_time();
return (t > 0 ? int((TM.nodes_searched() * 1000) / t) : 0);
2008-08-31 23:59:13 -06:00
}
// poll() performs two different functions: It polls for user input, and it
2008-08-31 23:59:13 -06:00
// looks at the time consumed so far and decides if it's time to abort the
// search.
void poll() {
2008-08-31 23:59:13 -06:00
static int lastInfoTime;
int t = current_search_time();
2008-08-31 23:59:13 -06:00
// Poll for input
if (Bioskey())
{
// We are line oriented, don't read single chars
std::string command;
if (!std::getline(std::cin, command))
command = "quit";
if (command == "quit")
{
AbortSearch = true;
PonderSearch = false;
Quit = true;
return;
}
else if (command == "stop")
{
AbortSearch = true;
PonderSearch = false;
}
else if (command == "ponderhit")
ponderhit();
2008-08-31 23:59:13 -06:00
}
// Print search information
if (t < 1000)
lastInfoTime = 0;
else if (lastInfoTime > t)
// HACK: Must be a new search where we searched less than
// NodesBetweenPolls nodes during the first second of search.
lastInfoTime = 0;
2008-08-31 23:59:13 -06:00
else if (t - lastInfoTime >= 1000)
{
lastInfoTime = t;
if (dbg_show_mean)
dbg_print_mean();
if (dbg_show_hit_rate)
dbg_print_hit_rate();
cout << "info nodes " << TM.nodes_searched() << " nps " << nps()
<< " time " << t << endl;
}
2008-08-31 23:59:13 -06:00
// Should we stop the search?
if (PonderSearch)
return;
bool stillAtFirstMove = FirstRootMove
&& !AspirationFailLow
&& t > MaxSearchTime + ExtraSearchTime;
bool noMoreTime = t > AbsoluteMaxSearchTime
|| stillAtFirstMove;
if ( (Iteration >= 3 && UseTimeManagement && noMoreTime)
|| (ExactMaxTime && t >= ExactMaxTime)
|| (Iteration >= 3 && MaxNodes && TM.nodes_searched() >= MaxNodes))
AbortSearch = true;
2008-08-31 23:59:13 -06:00
}
// ponderhit() is called when the program is pondering (i.e. thinking while
// it's the opponent's turn to move) in order to let the engine know that
// it correctly predicted the opponent's move.
void ponderhit() {
2008-08-31 23:59:13 -06:00
int t = current_search_time();
PonderSearch = false;
bool stillAtFirstMove = FirstRootMove
&& !AspirationFailLow
&& t > MaxSearchTime + ExtraSearchTime;
bool noMoreTime = t > AbsoluteMaxSearchTime
|| stillAtFirstMove;
if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit))
AbortSearch = true;
2008-08-31 23:59:13 -06:00
}
// init_ss_array() does a fast reset of the first entries of a SearchStack
// array and of all the excludedMove and skipNullMove entries.
void init_ss_array(SearchStack* ss, int size) {
for (int i = 0; i < size; i++, ss++)
{
ss->excludedMove = MOVE_NONE;
ss->skipNullMove = false;
ss->reduction = Depth(0);
if (i < 3)
ss->killers[0] = ss->killers[1] = ss->mateKiller = MOVE_NONE;
}
}
2008-08-31 23:59:13 -06:00
// wait_for_stop_or_ponderhit() is called when the maximum depth is reached
// while the program is pondering. The point is to work around a wrinkle in
// the UCI protocol: When pondering, the engine is not allowed to give a
2008-08-31 23:59:13 -06:00
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
// We simply wait here until one of these commands is sent, and return,
// after which the bestmove and pondermove will be printed (in id_loop()).
2008-08-31 23:59:13 -06:00
void wait_for_stop_or_ponderhit() {
2008-08-31 23:59:13 -06:00
std::string command;
while (true)
{
if (!std::getline(std::cin, command))
command = "quit";
if (command == "quit")
{
Quit = true;
break;
}
else if (command == "ponderhit" || command == "stop")
break;
2008-08-31 23:59:13 -06:00
}
}
// print_pv_info() prints to standard output and eventually to log file information on
// the current PV line. It is called at each iteration or after a new pv is found.
void print_pv_info(const Position& pos, Move pv[], Value alpha, Value beta, Value value) {
cout << "info depth " << Iteration
<< " score " << value_to_uci(value)
<< (value >= beta ? " lowerbound" : value <= alpha ? " upperbound" : "")
<< " time " << current_search_time()
<< " nodes " << TM.nodes_searched()
<< " nps " << nps()
<< " pv ";
for (Move* m = pv; *m != MOVE_NONE; m++)
cout << *m << " ";
cout << endl;
if (UseLogFile)
{
ValueType t = value >= beta ? VALUE_TYPE_LOWER :
value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT;
LogFile << pretty_pv(pos, current_search_time(), Iteration,
TM.nodes_searched(), value, t, pv) << endl;
}
}
// insert_pv_in_tt() is called at the end of a search iteration, and inserts
// the PV back into the TT. This makes sure the old PV moves are searched
// first, even if the old TT entries have been overwritten.
void insert_pv_in_tt(const Position& pos, Move pv[]) {
StateInfo st;
TTEntry* tte;
Position p(pos, pos.thread());
EvalInfo ei;
Value v;
for (int i = 0; pv[i] != MOVE_NONE; i++)
{
tte = TT.retrieve(p.get_key());
if (!tte || tte->move() != pv[i])
{
v = (p.is_check() ? VALUE_NONE : evaluate(p, ei));
TT.store(p.get_key(), VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[i], v, ei.kingDanger[pos.side_to_move()]);
}
p.do_move(pv[i], st);
}
}
// extract_pv_from_tt() builds a PV by adding moves from the transposition table.
// We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This
// allow to always have a ponder move even when we fail high at root and also a
// long PV to print that is important for position analysis.
void extract_pv_from_tt(const Position& pos, Move bestMove, Move pv[]) {
StateInfo st;
TTEntry* tte;
Position p(pos, pos.thread());
int ply = 0;
assert(bestMove != MOVE_NONE);
pv[ply] = bestMove;
p.do_move(pv[ply++], st);
while ( (tte = TT.retrieve(p.get_key())) != NULL
&& tte->move() != MOVE_NONE
&& move_is_legal(p, tte->move())
&& ply < PLY_MAX
&& (!p.is_draw() || ply < 2))
{
pv[ply] = tte->move();
p.do_move(pv[ply++], st);
}
pv[ply] = MOVE_NONE;
}
// init_thread() is the function which is called when a new thread is
// launched. It simply calls the idle_loop() function with the supplied
// threadID. There are two versions of this function; one for POSIX
// threads and one for Windows threads.
#if !defined(_MSC_VER)
void* init_thread(void *threadID) {
TM.idle_loop(*(int*)threadID, NULL);
return NULL;
}
#else
DWORD WINAPI init_thread(LPVOID threadID) {
TM.idle_loop(*(int*)threadID, NULL);
return 0;
}
#endif
/// The ThreadsManager class
// resetNodeCounters(), resetBetaCounters(), searched_nodes() and
// get_beta_counters() are getters/setters for the per thread
// counters used to sort the moves at root.
void ThreadsManager::resetNodeCounters() {
for (int i = 0; i < MAX_THREADS; i++)
threads[i].nodes = 0ULL;
}
void ThreadsManager::resetBetaCounters() {
for (int i = 0; i < MAX_THREADS; i++)
threads[i].betaCutOffs[WHITE] = threads[i].betaCutOffs[BLACK] = 0ULL;
}
int64_t ThreadsManager::nodes_searched() const {
int64_t result = 0ULL;
for (int i = 0; i < ActiveThreads; i++)
result += threads[i].nodes;
return result;
}
void ThreadsManager::get_beta_counters(Color us, int64_t& our, int64_t& their) const {
our = their = 0UL;
for (int i = 0; i < MAX_THREADS; i++)
{
our += threads[i].betaCutOffs[us];
their += threads[i].betaCutOffs[opposite_color(us)];
}
}
2008-08-31 23:59:13 -06:00
// idle_loop() is where the threads are parked when they have no work to do.
// The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint
2008-08-31 23:59:13 -06:00
// object for which the current thread is the master.
void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) {
assert(threadID >= 0 && threadID < MAX_THREADS);
2008-08-31 23:59:13 -06:00
while (true)
{
// Slave threads can exit as soon as AllThreadsShouldExit raises,
// master should exit as last one.
if (AllThreadsShouldExit)
{
assert(!sp);
threads[threadID].state = THREAD_TERMINATED;
return;
}
// If we are not thinking, wait for a condition to be signaled
// instead of wasting CPU time polling for work.
while (AllThreadsShouldSleep || threadID >= ActiveThreads)
{
assert(!sp);
assert(threadID != 0);
threads[threadID].state = THREAD_SLEEPING;
2008-08-31 23:59:13 -06:00
#if !defined(_MSC_VER)
lock_grab(&WaitLock);
if (AllThreadsShouldSleep || threadID >= ActiveThreads)
pthread_cond_wait(&WaitCond, &WaitLock);
lock_release(&WaitLock);
2008-08-31 23:59:13 -06:00
#else
WaitForSingleObject(SitIdleEvent[threadID], INFINITE);
2008-08-31 23:59:13 -06:00
#endif
}
2008-08-31 23:59:13 -06:00
// If thread has just woken up, mark it as available
if (threads[threadID].state == THREAD_SLEEPING)
threads[threadID].state = THREAD_AVAILABLE;
// If this thread has been assigned work, launch a search
if (threads[threadID].state == THREAD_WORKISWAITING)
{
assert(!AllThreadsShouldExit && !AllThreadsShouldSleep);
threads[threadID].state = THREAD_SEARCHING;
if (threads[threadID].splitPoint->pvNode)
sp_search<PV>(threads[threadID].splitPoint, threadID);
else
sp_search<NonPV>(threads[threadID].splitPoint, threadID);
assert(threads[threadID].state == THREAD_SEARCHING);
threads[threadID].state = THREAD_AVAILABLE;
}
2008-08-31 23:59:13 -06:00
// If this thread is the master of a split point and all slaves have
// finished their work at this split point, return from the idle loop.
int i = 0;
for ( ; sp && i < ActiveThreads && !sp->slaves[i]; i++) {}
if (i == ActiveThreads)
{
// Because sp->slaves[] is reset under lock protection,
// be sure sp->lock has been released before to return.
lock_grab(&(sp->lock));
lock_release(&(sp->lock));
assert(threads[threadID].state == THREAD_AVAILABLE);
threads[threadID].state = THREAD_SEARCHING;
return;
}
2008-08-31 23:59:13 -06:00
}
}
// init_threads() is called during startup. It launches all helper threads,
// and initializes the split point stack and the global locks and condition
// objects.
2008-08-31 23:59:13 -06:00
void ThreadsManager::init_threads() {
volatile int i;
bool ok;
#if !defined(_MSC_VER)
pthread_t pthread[1];
#endif
// Initialize global locks
lock_init(&MPLock);
lock_init(&WaitLock);
#if !defined(_MSC_VER)
pthread_cond_init(&WaitCond, NULL);
#else
for (i = 0; i < MAX_THREADS; i++)
SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0);
#endif
// Initialize splitPoints[] locks
for (i = 0; i < MAX_THREADS; i++)
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
lock_init(&(threads[i].splitPoints[j].lock));
// Will be set just before program exits to properly end the threads
AllThreadsShouldExit = false;
// Threads will be put to sleep as soon as created
AllThreadsShouldSleep = true;
// All threads except the main thread should be initialized to THREAD_AVAILABLE
ActiveThreads = 1;
threads[0].state = THREAD_SEARCHING;
for (i = 1; i < MAX_THREADS; i++)
threads[i].state = THREAD_AVAILABLE;
// Launch the helper threads
for (i = 1; i < MAX_THREADS; i++)
{
#if !defined(_MSC_VER)
ok = (pthread_create(pthread, NULL, init_thread, (void*)(&i)) == 0);
#else
ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, NULL) != NULL);
#endif
if (!ok)
{
cout << "Failed to create thread number " << i << endl;
Application::exit_with_failure();
}
// Wait until the thread has finished launching and is gone to sleep
while (threads[i].state != THREAD_SLEEPING) {}
}
2008-08-31 23:59:13 -06:00
}
// exit_threads() is called when the program exits. It makes all the
// helper threads exit cleanly.
void ThreadsManager::exit_threads() {
2008-08-31 23:59:13 -06:00
ActiveThreads = MAX_THREADS; // HACK
AllThreadsShouldSleep = true; // HACK
wake_sleeping_threads();
// This makes the threads to exit idle_loop()
AllThreadsShouldExit = true;
// Wait for thread termination
for (int i = 1; i < MAX_THREADS; i++)
while (threads[i].state != THREAD_TERMINATED) {}
// Now we can safely destroy the locks
for (int i = 0; i < MAX_THREADS; i++)
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
lock_destroy(&(threads[i].splitPoints[j].lock));
lock_destroy(&WaitLock);
lock_destroy(&MPLock);
}
2008-08-31 23:59:13 -06:00
// thread_should_stop() checks whether the thread should stop its search.
// This can happen if a beta cutoff has occurred in the thread's currently
// active split point, or in some ancestor of the current split point.
2008-08-31 23:59:13 -06:00
bool ThreadsManager::thread_should_stop(int threadID) const {
2008-08-31 23:59:13 -06:00
assert(threadID >= 0 && threadID < ActiveThreads);
SplitPoint* sp;
2008-08-31 23:59:13 -06:00
for (sp = threads[threadID].splitPoint; sp && !sp->stopRequest; sp = sp->parent) {}
return sp != NULL;
}
2008-08-31 23:59:13 -06:00
// thread_is_available() checks whether the thread with threadID "slave" is
// available to help the thread with threadID "master" at a split point. An
// obvious requirement is that "slave" must be idle. With more than two
2008-08-31 23:59:13 -06:00
// threads, this is not by itself sufficient: If "slave" is the master of
// some active split point, it is only available as a slave to the other
// threads which are busy searching the split point at the top of "slave"'s
// split point stack (the "helpful master concept" in YBWC terminology).
bool ThreadsManager::thread_is_available(int slave, int master) const {
2008-08-31 23:59:13 -06:00
assert(slave >= 0 && slave < ActiveThreads);
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
if (threads[slave].state != THREAD_AVAILABLE || slave == master)
return false;
2008-08-31 23:59:13 -06:00
// Make a local copy to be sure doesn't change under our feet
int localActiveSplitPoints = threads[slave].activeSplitPoints;
if (localActiveSplitPoints == 0)
// No active split points means that the thread is available as
// a slave for any other thread.
return true;
2008-08-31 23:59:13 -06:00
if (ActiveThreads == 2)
return true;
2008-08-31 23:59:13 -06:00
// Apply the "helpful master" concept if possible. Use localActiveSplitPoints
// that is known to be > 0, instead of threads[slave].activeSplitPoints that
// could have been set to 0 by another thread leading to an out of bound access.
if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master])
return true;
2008-08-31 23:59:13 -06:00
return false;
}
// available_thread_exists() tries to find an idle thread which is available as
2008-08-31 23:59:13 -06:00
// a slave for the thread with threadID "master".
bool ThreadsManager::available_thread_exists(int master) const {
2008-08-31 23:59:13 -06:00
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
for (int i = 0; i < ActiveThreads; i++)
if (thread_is_available(i, master))
return true;
2008-08-31 23:59:13 -06:00
return false;
}
// split() does the actual work of distributing the work at a node between
// several available threads. If it does not succeed in splitting the
2008-08-31 23:59:13 -06:00
// node (because no idle threads are available, or because we have no unused
// split point objects), the function immediately returns. If splitting is
// possible, a SplitPoint object is initialized with all the data that must be
// copied to the helper threads and we tell our helper threads that they have
// been assigned work. This will cause them to instantly leave their idle loops
// and call sp_search(). When all threads have returned from sp_search() then
// split() returns.
2008-08-31 23:59:13 -06:00
template <bool Fake>
void ThreadsManager::split(const Position& p, SearchStack* ss, int ply, Value* alpha,
const Value beta, Value* bestValue, Depth depth, Move threatMove,
bool mateThreat, int* moveCount, MovePicker* mp, bool pvNode) {
2008-08-31 23:59:13 -06:00
assert(p.is_ok());
assert(ply > 0 && ply < PLY_MAX);
assert(*bestValue >= -VALUE_INFINITE);
assert(*bestValue <= *alpha);
assert(*alpha < beta);
assert(beta <= VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
assert(depth > Depth(0));
assert(p.thread() >= 0 && p.thread() < ActiveThreads);
assert(ActiveThreads > 1);
2008-08-31 23:59:13 -06:00
int i, master = p.thread();
Thread& masterThread = threads[master];
2008-08-31 23:59:13 -06:00
lock_grab(&MPLock);
// If no other thread is available to help us, or if we have too many
// active split points, don't split.
if ( !available_thread_exists(master)
|| masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
{
lock_release(&MPLock);
return;
2008-08-31 23:59:13 -06:00
}
// Pick the next available split point object from the split point stack
SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++];
2008-08-31 23:59:13 -06:00
// Initialize the split point object
splitPoint.parent = masterThread.splitPoint;
splitPoint.stopRequest = false;
splitPoint.ply = ply;
splitPoint.depth = depth;
splitPoint.threatMove = threatMove;
splitPoint.mateThreat = mateThreat;
splitPoint.alpha = *alpha;
splitPoint.beta = beta;
splitPoint.pvNode = pvNode;
splitPoint.bestValue = *bestValue;
splitPoint.mp = mp;
splitPoint.moveCount = *moveCount;
splitPoint.pos = &p;
splitPoint.parentSstack = ss;
for (i = 0; i < ActiveThreads; i++)
splitPoint.slaves[i] = 0;
masterThread.splitPoint = &splitPoint;
2008-08-31 23:59:13 -06:00
// If we are here it means we are not available
assert(masterThread.state != THREAD_AVAILABLE);
int workersCnt = 1; // At least the master is included
// Allocate available threads setting state to THREAD_BOOKED
for (i = 0; !Fake && i < ActiveThreads && workersCnt < MaxThreadsPerSplitPoint; i++)
if (thread_is_available(i, master))
{
threads[i].state = THREAD_BOOKED;
threads[i].splitPoint = &splitPoint;
splitPoint.slaves[i] = 1;
workersCnt++;
}
2008-08-31 23:59:13 -06:00
assert(Fake || workersCnt > 1);
// We can release the lock because slave threads are already booked and master is not available
lock_release(&MPLock);
// Tell the threads that they have work to do. This will make them leave
// their idle loop. But before copy search stack tail for each thread.
for (i = 0; i < ActiveThreads; i++)
if (i == master || splitPoint.slaves[i])
{
memcpy(splitPoint.sstack[i], ss - 1, 4 * sizeof(SearchStack));
assert(i == master || threads[i].state == THREAD_BOOKED);
threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
}
2008-08-31 23:59:13 -06:00
// Everything is set up. The master thread enters the idle loop, from
// which it will instantly launch a search, because its state is
// THREAD_WORKISWAITING. We send the split point as a second parameter to the
2008-08-31 23:59:13 -06:00
// idle loop, which means that the main thread will return from the idle
// loop when all threads have finished their work at this split point.
idle_loop(master, &splitPoint);
2008-08-31 23:59:13 -06:00
// We have returned from the idle loop, which means that all threads are
// finished. Update alpha and bestValue, and return.
2008-08-31 23:59:13 -06:00
lock_grab(&MPLock);
*alpha = splitPoint.alpha;
*bestValue = splitPoint.bestValue;
masterThread.activeSplitPoints--;
masterThread.splitPoint = splitPoint.parent;
2008-08-31 23:59:13 -06:00
lock_release(&MPLock);
2008-08-31 23:59:13 -06:00
}
// wake_sleeping_threads() wakes up all sleeping threads when it is time
// to start a new search from the root.
void ThreadsManager::wake_sleeping_threads() {
assert(AllThreadsShouldSleep);
assert(ActiveThreads > 0);
AllThreadsShouldSleep = false;
if (ActiveThreads == 1)
return;
2008-08-31 23:59:13 -06:00
#if !defined(_MSC_VER)
pthread_mutex_lock(&WaitLock);
pthread_cond_broadcast(&WaitCond);
pthread_mutex_unlock(&WaitLock);
2008-08-31 23:59:13 -06:00
#else
for (int i = 1; i < MAX_THREADS; i++)
SetEvent(SitIdleEvent[i]);
2008-08-31 23:59:13 -06:00
#endif
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
// put_threads_to_sleep() makes all the threads go to sleep just before
// to leave think(), at the end of the search. Threads should have already
// finished the job and should be idle.
void ThreadsManager::put_threads_to_sleep() {
assert(!AllThreadsShouldSleep);
// This makes the threads to go to sleep
AllThreadsShouldSleep = true;
}
/// The RootMoveList class
// RootMoveList c'tor
RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) {
SearchStack ss[PLY_MAX_PLUS_2];
MoveStack mlist[MaxRootMoves];
StateInfo st;
bool includeAllMoves = (searchMoves[0] == MOVE_NONE);
// Initialize search stack
init_ss_array(ss, PLY_MAX_PLUS_2);
ss[0].currentMove = ss[0].bestMove = MOVE_NONE;
ss[0].eval = VALUE_NONE;
// Generate all legal moves
MoveStack* last = generate_moves(pos, mlist);
// Add each move to the moves[] array
for (MoveStack* cur = mlist; cur != last; cur++)
{
bool includeMove = includeAllMoves;
for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++)
includeMove = (searchMoves[k] == cur->move);
if (!includeMove)
continue;
// Find a quick score for the move
pos.do_move(cur->move, st);
ss[0].currentMove = cur->move;
moves[count].move = cur->move;
moves[count].score = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1);
moves[count].pv[0] = cur->move;
moves[count].pv[1] = MOVE_NONE;
pos.undo_move(cur->move);
count++;
}
sort();
2008-08-31 23:59:13 -06:00
}
// RootMoveList simple methods definitions
void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) {
moves[moveNum].nodes = nodes;
moves[moveNum].cumulativeNodes += nodes;
}
void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) {
moves[moveNum].ourBeta = our;
moves[moveNum].theirBeta = their;
}
void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
int j;
for (j = 0; pv[j] != MOVE_NONE; j++)
moves[moveNum].pv[j] = pv[j];
moves[moveNum].pv[j] = MOVE_NONE;
}
// RootMoveList::sort() sorts the root move list at the beginning of a new
// iteration.
void RootMoveList::sort() {
sort_multipv(count - 1); // Sort all items
}
// RootMoveList::sort_multipv() sorts the first few moves in the root move
// list by their scores and depths. It is used to order the different PVs
// correctly in MultiPV mode.
void RootMoveList::sort_multipv(int n) {
int i,j;
for (i = 1; i <= n; i++)
{
RootMove rm = moves[i];
for (j = i; j > 0 && moves[j - 1] < rm; j--)
moves[j] = moves[j - 1];
moves[j] = rm;
}
}
} // namspace