1
0
Fork 0
stockfish/src/search.cpp

2736 lines
91 KiB
C++
Raw Normal View History

2008-08-31 23:59:13 -06:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
2008-08-31 23:59:13 -06:00
Stockfish is free software: you can redistribute it and/or modify
2008-08-31 23:59:13 -06:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
2008-08-31 23:59:13 -06:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2008-08-31 23:59:13 -06:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <cmath>
#include <cstring>
2008-08-31 23:59:13 -06:00
#include <fstream>
#include <iostream>
#include <sstream>
#include <vector>
2008-08-31 23:59:13 -06:00
#include "book.h"
#include "evaluate.h"
#include "history.h"
#include "misc.h"
#include "move.h"
#include "movegen.h"
2008-08-31 23:59:13 -06:00
#include "movepick.h"
#include "lock.h"
2008-08-31 23:59:13 -06:00
#include "search.h"
#include "timeman.h"
2008-08-31 23:59:13 -06:00
#include "thread.h"
#include "tt.h"
#include "ucioption.h"
using std::cout;
using std::endl;
2008-08-31 23:59:13 -06:00
////
//// Local definitions
////
namespace {
// Types
enum NodeType { NonPV, PV };
// Set to true to force running with one thread.
// Used for debugging SMP code.
const bool FakeSplit = false;
// Fast lookup table of sliding pieces indexed by Piece
const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 };
inline bool piece_is_slider(Piece p) { return Slidings[p]; }
// ThreadsManager class is used to handle all the threads related stuff in search,
// init, starting, parking and, the most important, launching a slave thread at a
// split point are what this class does. All the access to shared thread data is
// done through this class, so that we avoid using global variables instead.
class ThreadsManager {
/* As long as the single ThreadsManager object is defined as a global we don't
need to explicitly initialize to zero its data members because variables with
static storage duration are automatically set to zero before enter main()
*/
public:
void init_threads();
void exit_threads();
int min_split_depth() const { return minimumSplitDepth; }
int active_threads() const { return activeThreads; }
void set_active_threads(int cnt) { activeThreads = cnt; }
void read_uci_options();
bool available_thread_exists(int master) const;
bool thread_is_available(int slave, int master) const;
bool cutoff_at_splitpoint(int threadID) const;
void wake_sleeping_thread(int threadID);
void idle_loop(int threadID, SplitPoint* sp);
template <bool Fake>
void split(Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue,
Depth depth, Move threatMove, bool mateThreat, int moveCount, MovePicker* mp, bool pvNode);
private:
Depth minimumSplitDepth;
int maxThreadsPerSplitPoint;
bool useSleepingThreads;
int activeThreads;
volatile bool allThreadsShouldExit;
Thread threads[MAX_THREADS];
Lock mpLock, sleepLock[MAX_THREADS];
WaitCondition sleepCond[MAX_THREADS];
};
// RootMove struct is used for moves at the root at the tree. For each root
// move, we store two scores, a node count, and a PV (really a refutation
// in the case of moves which fail low). Value pv_score is normally set at
// -VALUE_INFINITE for all non-pv moves, while non_pv_score is computed
// according to the order in which moves are returned by MovePicker.
2008-08-31 23:59:13 -06:00
struct RootMove {
2008-08-31 23:59:13 -06:00
RootMove();
RootMove(const RootMove& rm) { *this = rm; }
RootMove& operator=(const RootMove& rm);
// RootMove::operator<() is the comparison function used when
// sorting the moves. A move m1 is considered to be better
// than a move m2 if it has an higher pv_score, or if it has
// equal pv_score but m1 has the higher non_pv_score. In this
// way we are guaranteed that PV moves are always sorted as first.
bool operator<(const RootMove& m) const {
return pv_score != m.pv_score ? pv_score < m.pv_score
: non_pv_score < m.non_pv_score;
}
void extract_pv_from_tt(Position& pos);
void insert_pv_in_tt(Position& pos);
std::string pv_info_to_uci(Position& pos, Value alpha, Value beta, int pvLine = 0);
int64_t nodes;
Value pv_score;
Value non_pv_score;
Move pv[PLY_MAX_PLUS_2];
2008-08-31 23:59:13 -06:00
};
// RootMoveList struct is essentially a std::vector<> of RootMove objects,
// with an handful of methods above the standard ones.
struct RootMoveList : public std::vector<RootMove> {
typedef std::vector<RootMove> Base;
RootMoveList(Position& pos, Move searchMoves[]);
void set_non_pv_scores(const Position& pos, Move ttm, SearchStack* ss);
void sort() { insertion_sort<RootMove, Base::iterator>(begin(), end()); }
void sort_multipv(int n) { insertion_sort<RootMove, Base::iterator>(begin(), begin() + n); }
2008-08-31 23:59:13 -06:00
};
// When formatting a move for std::cout we must know if we are in Chess960
// or not. To keep using the handy operator<<() on the move the trick is to
// embed this flag in the stream itself. Function-like named enum set960 is
// used as a custom manipulator and the stream internal general-purpose array,
// accessed through ios_base::iword(), is used to pass the flag to the move's
// operator<<() that will use it to properly format castling moves.
enum set960 {};
std::ostream& operator<< (std::ostream& os, const set960& f) {
os.iword(0) = int(f);
return os;
}
// Overload operator << for moves to make it easier to print moves in
// coordinate notation compatible with UCI protocol.
std::ostream& operator<<(std::ostream& os, Move m) {
bool chess960 = (os.iword(0) != 0); // See set960()
return os << move_to_uci(m, chess960);
}
/// Adjustments
// Step 6. Razoring
// Maximum depth for razoring
const Depth RazorDepth = 4 * ONE_PLY;
// Dynamic razoring margin based on depth
inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * int(d)); }
2008-08-31 23:59:13 -06:00
// Maximum depth for use of dynamic threat detection when null move fails low
const Depth ThreatDepth = 5 * ONE_PLY;
// Step 9. Internal iterative deepening
2008-08-31 23:59:13 -06:00
// Minimum depth for use of internal iterative deepening
const Depth IIDDepth[2] = { 8 * ONE_PLY /* non-PV */, 5 * ONE_PLY /* PV */};
// At Non-PV nodes we do an internal iterative deepening search
// when the static evaluation is bigger then beta - IIDMargin.
2008-08-31 23:59:13 -06:00
const Value IIDMargin = Value(0x100);
// Step 11. Decide the new search depth
// Extensions. Configurable UCI options
// Array index 0 is used at non-PV nodes, index 1 at PV nodes.
Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2];
Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2];
// Minimum depth for use of singular extension
const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */};
// If the TT move is at least SingularExtensionMargin better then the
// remaining ones we will extend it.
const Value SingularExtensionMargin = Value(0x20);
// Step 12. Futility pruning
// Futility margin for quiescence search
const Value FutilityMarginQS = Value(0x80);
// Futility lookup tables (initialized at startup) and their getter functions
Value FutilityMarginsMatrix[16][64]; // [depth][moveNumber]
int FutilityMoveCountArray[32]; // [depth]
inline Value futility_margin(Depth d, int mn) { return d < 7 * ONE_PLY ? FutilityMarginsMatrix[Max(d, 1)][Min(mn, 63)] : 2 * VALUE_INFINITE; }
inline int futility_move_count(Depth d) { return d < 16 * ONE_PLY ? FutilityMoveCountArray[d] : 512; }
2008-08-31 23:59:13 -06:00
// Step 14. Reduced search
// Reduction lookup tables (initialized at startup) and their getter functions
int8_t ReductionMatrix[2][64][64]; // [pv][depth][moveNumber]
template <NodeType PV>
inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / 2, 63)][Min(mn, 63)]; }
// Common adjustments
// Search depth at iteration 1
const Depth InitialDepth = ONE_PLY;
// Easy move margin. An easy move candidate must be at least this much
// better than the second best move.
const Value EasyMoveMargin = Value(0x200);
/// Namespace variables
// Book object
Book OpeningBook;
// Iteration counter
2008-08-31 23:59:13 -06:00
int Iteration;
// Scores and number of times the best move changed for each iteration
Value ValueByIteration[PLY_MAX_PLUS_2];
2008-08-31 23:59:13 -06:00
int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
// Search window management
int AspirationDelta;
// MultiPV mode
int MultiPV;
2008-08-31 23:59:13 -06:00
// Time managment variables
int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime;
bool UseTimeManagement, InfiniteSearch, Pondering, StopOnPonderhit;
bool FirstRootMove, StopRequest, QuitRequest, AspirationFailLow;
TimeManager TimeMgr;
2008-08-31 23:59:13 -06:00
// Log file
bool UseLogFile;
2008-08-31 23:59:13 -06:00
std::ofstream LogFile;
// Multi-threads manager object
ThreadsManager ThreadsMgr;
2008-08-31 23:59:13 -06:00
// Node counters, used only by thread[0] but try to keep in different cache
// lines (64 bytes each) from the heavy multi-thread read accessed variables.
bool SendSearchedNodes;
int NodesSincePoll;
int NodesBetweenPolls = 30000;
// History table
History H;
/// Local functions
2008-08-31 23:59:13 -06:00
Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove);
Value root_search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, RootMoveList& rml);
template <NodeType PvNode, bool SpNode>
Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply);
template <NodeType PvNode>
Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply);
template <NodeType PvNode>
inline Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) {
return depth < ONE_PLY ? qsearch<PvNode>(pos, ss, alpha, beta, DEPTH_ZERO, ply)
: search<PvNode, false>(pos, ss, alpha, beta, depth, ply);
}
template <NodeType PvNode>
Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous);
bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bValue);
bool connected_moves(const Position& pos, Move m1, Move m2);
bool value_is_mate(Value value);
Value value_to_tt(Value v, int ply);
Value value_from_tt(Value v, int ply);
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
bool connected_threat(const Position& pos, Move m, Move threat);
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
void update_killers(Move m, Move killers[]);
void update_gains(const Position& pos, Move move, Value before, Value after);
2008-08-31 23:59:13 -06:00
int current_search_time();
std::string value_to_uci(Value v);
int nps(const Position& pos);
void poll(const Position& pos);
2008-08-31 23:59:13 -06:00
void wait_for_stop_or_ponderhit();
void init_ss_array(SearchStack* ss, int size);
2008-08-31 23:59:13 -06:00
#if !defined(_MSC_VER)
void* init_thread(void* threadID);
2008-08-31 23:59:13 -06:00
#else
DWORD WINAPI init_thread(LPVOID threadID);
#endif
2008-08-31 23:59:13 -06:00
}
////
//// Functions
////
/// init_threads(), exit_threads() and nodes_searched() are helpers to
/// give accessibility to some TM methods from outside of current file.
void init_threads() { ThreadsMgr.init_threads(); }
void exit_threads() { ThreadsMgr.exit_threads(); }
/// init_search() is called during startup. It initializes various lookup tables
void init_search() {
int d; // depth (ONE_PLY == 2)
int hd; // half depth (ONE_PLY == 1)
int mc; // moveCount
// Init reductions array
for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++)
{
double pvRed = log(double(hd)) * log(double(mc)) / 3.0;
double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0);
ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0);
}
// Init futility margins array
for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++)
FutilityMarginsMatrix[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45);
// Init futility move count array
for (d = 0; d < 32; d++)
FutilityMoveCountArray[d] = int(3.001 + 0.25 * pow(d, 2.0));
}
/// perft() is our utility to verify move generation is bug free. All the legal
/// moves up to given depth are generated and counted and the sum returned.
int64_t perft(Position& pos, Depth depth)
{
MoveStack mlist[MOVES_MAX];
StateInfo st;
Move m;
int64_t sum = 0;
// Generate all legal moves
MoveStack* last = generate<MV_LEGAL>(pos, mlist);
// If we are at the last ply we don't need to do and undo
// the moves, just to count them.
if (depth <= ONE_PLY)
return int(last - mlist);
// Loop through all legal moves
CheckInfo ci(pos);
for (MoveStack* cur = mlist; cur != last; cur++)
{
m = cur->move;
pos.do_move(m, st, ci, pos.move_is_check(m, ci));
sum += perft(pos, depth - ONE_PLY);
pos.undo_move(m);
}
return sum;
}
/// think() is the external interface to Stockfish's search, and is called when
/// the program receives the UCI 'go' command. It initializes various
/// search-related global variables, and calls root_search(). It returns false
/// when a quit command is received during the search.
2008-08-31 23:59:13 -06:00
bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[],
int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) {
2008-08-31 23:59:13 -06:00
// Initialize global search variables
StopOnPonderhit = StopRequest = QuitRequest = AspirationFailLow = SendSearchedNodes = false;
NodesSincePoll = 0;
SearchStartTime = get_system_time();
ExactMaxTime = maxTime;
MaxDepth = maxDepth;
MaxNodes = maxNodes;
InfiniteSearch = infinite;
Pondering = ponder;
UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch;
// Look for a book move, only during games, not tests
if (UseTimeManagement && Options["OwnBook"].value<bool>())
{
if (Options["Book File"].value<std::string>() != OpeningBook.name())
OpeningBook.open(Options["Book File"].value<std::string>());
Move bookMove = OpeningBook.get_move(pos, Options["Best Book Move"].value<bool>());
if (bookMove != MOVE_NONE)
{
if (Pondering)
wait_for_stop_or_ponderhit();
cout << "bestmove " << bookMove << endl;
return !QuitRequest;
}
2008-08-31 23:59:13 -06:00
}
// Read UCI option values
TT.set_size(Options["Hash"].value<int>());
if (Options["Clear Hash"].value<bool>())
{
Options["Clear Hash"].set_value("false");
TT.clear();
}
CheckExtension[1] = Options["Check Extension (PV nodes)"].value<Depth>();
CheckExtension[0] = Options["Check Extension (non-PV nodes)"].value<Depth>();
SingleEvasionExtension[1] = Options["Single Evasion Extension (PV nodes)"].value<Depth>();
SingleEvasionExtension[0] = Options["Single Evasion Extension (non-PV nodes)"].value<Depth>();
PawnPushTo7thExtension[1] = Options["Pawn Push to 7th Extension (PV nodes)"].value<Depth>();
PawnPushTo7thExtension[0] = Options["Pawn Push to 7th Extension (non-PV nodes)"].value<Depth>();
PassedPawnExtension[1] = Options["Passed Pawn Extension (PV nodes)"].value<Depth>();
PassedPawnExtension[0] = Options["Passed Pawn Extension (non-PV nodes)"].value<Depth>();
PawnEndgameExtension[1] = Options["Pawn Endgame Extension (PV nodes)"].value<Depth>();
PawnEndgameExtension[0] = Options["Pawn Endgame Extension (non-PV nodes)"].value<Depth>();
MateThreatExtension[1] = Options["Mate Threat Extension (PV nodes)"].value<Depth>();
MateThreatExtension[0] = Options["Mate Threat Extension (non-PV nodes)"].value<Depth>();
MultiPV = Options["MultiPV"].value<int>();
UseLogFile = Options["Use Search Log"].value<bool>();
read_evaluation_uci_options(pos.side_to_move());
// Set the number of active threads
ThreadsMgr.read_uci_options();
init_eval(ThreadsMgr.active_threads());
2008-08-31 23:59:13 -06:00
// Wake up needed threads
for (int i = 1; i < ThreadsMgr.active_threads(); i++)
ThreadsMgr.wake_sleeping_thread(i);
// Set thinking time
int myTime = time[pos.side_to_move()];
int myIncrement = increment[pos.side_to_move()];
if (UseTimeManagement)
TimeMgr.init(myTime, myIncrement, movesToGo, pos.startpos_ply_counter());
// Set best NodesBetweenPolls interval to avoid lagging under
// heavy time pressure.
if (MaxNodes)
NodesBetweenPolls = Min(MaxNodes, 30000);
else if (myTime && myTime < 1000)
NodesBetweenPolls = 1000;
else if (myTime && myTime < 5000)
NodesBetweenPolls = 5000;
2008-08-31 23:59:13 -06:00
else
NodesBetweenPolls = 30000;
2008-08-31 23:59:13 -06:00
// Write search information to log file
if (UseLogFile)
{
std::string name = Options["Search Log Filename"].value<std::string>();
LogFile.open(name.c_str(), std::ios::out | std::ios::app);
LogFile << "Searching: " << pos.to_fen()
<< "\ninfinite: " << infinite
<< " ponder: " << ponder
<< " time: " << myTime
<< " increment: " << myIncrement
<< " moves to go: " << movesToGo << endl;
}
// We're ready to start thinking. Call the iterative deepening loop function
Move ponderMove = MOVE_NONE;
Move bestMove = id_loop(pos, searchMoves, &ponderMove);
// Print final search statistics
cout << "info nodes " << pos.nodes_searched()
<< " nps " << nps(pos)
<< " time " << current_search_time() << endl;
if (UseLogFile)
{
LogFile << "\nNodes: " << pos.nodes_searched()
<< "\nNodes/second: " << nps(pos)
<< "\nBest move: " << move_to_san(pos, bestMove);
StateInfo st;
pos.do_move(bestMove, st);
LogFile << "\nPonder move: "
<< move_to_san(pos, ponderMove) // Works also with MOVE_NONE
<< endl;
2008-08-31 23:59:13 -06:00
// Return from think() with unchanged position
pos.undo_move(bestMove);
LogFile.close();
}
// This makes all the threads to go to sleep
ThreadsMgr.set_active_threads(1);
// If we are pondering or in infinite search, we shouldn't print the
// best move before we are told to do so.
if (!StopRequest && (Pondering || InfiniteSearch))
wait_for_stop_or_ponderhit();
// Could be both MOVE_NONE when searching on a stalemate position
cout << "bestmove " << bestMove << " ponder " << ponderMove << endl;
return !QuitRequest;
2008-08-31 23:59:13 -06:00
}
namespace {
// id_loop() is the main iterative deepening loop. It calls root_search
2008-08-31 23:59:13 -06:00
// repeatedly with increasing depth until the allocated thinking time has
// been consumed, the user stops the search, or the maximum search depth is
// reached.
Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove) {
2008-08-31 23:59:13 -06:00
SearchStack ss[PLY_MAX_PLUS_2];
Depth depth;
Move EasyMove = MOVE_NONE;
Value value, alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
int researchCountFL, researchCountFH;
2008-08-31 23:59:13 -06:00
// Moves to search are verified, scored and sorted
RootMoveList rml(pos, searchMoves);
// Handle special case of searching on a mate/stale position
if (rml.size() == 0)
{
Value s = (pos.is_check() ? -VALUE_MATE : VALUE_DRAW);
cout << "info depth " << 1
<< " score " << value_to_uci(s) << endl;
return MOVE_NONE;
}
2008-08-31 23:59:13 -06:00
// Initialize
TT.new_search();
H.clear();
init_ss_array(ss, PLY_MAX_PLUS_2);
ValueByIteration[1] = rml[0].pv_score;
2008-08-31 23:59:13 -06:00
Iteration = 1;
// Send initial RootMoveList scoring (iteration 1)
cout << set960(pos.is_chess960()) // Is enough to set once at the beginning
<< "info depth " << Iteration
<< "\n" << rml[0].pv_info_to_uci(pos, alpha, beta) << endl;
// Is one move significantly better than others after initial scoring ?
if ( rml.size() == 1
|| rml[0].pv_score > rml[1].pv_score + EasyMoveMargin)
EasyMove = rml[0].pv[0];
2008-08-31 23:59:13 -06:00
// Iterative deepening loop
while (Iteration < PLY_MAX)
{
// Initialize iteration
Iteration++;
BestMoveChangesByIteration[Iteration] = 0;
cout << "info depth " << Iteration << endl;
// Calculate dynamic aspiration window based on previous iterations
if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN)
{
int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2];
int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3];
AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize
alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE);
beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE);
}
depth = (Iteration - 2) * ONE_PLY + InitialDepth;
researchCountFL = researchCountFH = 0;
// We start with small aspiration window and in case of fail high/low, we
// research with bigger window until we are not failing high/low anymore.
while (true)
{
// Sort the moves before to (re)search
rml.set_non_pv_scores(pos, rml[0].pv[0], ss);
rml.sort();
// Search to the current depth, rml is updated and sorted
value = root_search(pos, ss, alpha, beta, depth, rml);
// Sort the moves before to return
rml.sort();
// Write PV lines to transposition table, in case the relevant entries
// have been overwritten during the search.
for (int i = 0; i < Min(MultiPV, (int)rml.size()); i++)
rml[i].insert_pv_in_tt(pos);
if (StopRequest)
break;
assert(value >= alpha);
if (value >= beta)
{
// Prepare for a research after a fail high, each time with a wider window
beta = Min(beta + AspirationDelta * (1 << researchCountFH), VALUE_INFINITE);
researchCountFH++;
}
else if (value <= alpha)
{
AspirationFailLow = true;
StopOnPonderhit = false;
// Prepare for a research after a fail low, each time with a wider window
alpha = Max(alpha - AspirationDelta * (1 << researchCountFL), -VALUE_INFINITE);
researchCountFL++;
}
else
break;
}
if (StopRequest)
break; // Value cannot be trusted. Break out immediately!
//Save info about search result
ValueByIteration[Iteration] = value;
// Drop the easy move if differs from the new best move
if (rml[0].pv[0] != EasyMove)
EasyMove = MOVE_NONE;
if (UseTimeManagement)
{
// Time to stop?
bool stopSearch = false;
// Stop search early if there is only a single legal move,
// we search up to Iteration 6 anyway to get a proper score.
if (Iteration >= 6 && rml.size() == 1)
stopSearch = true;
// Stop search early when the last two iterations returned a mate score
if ( Iteration >= 6
&& abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
&& abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
stopSearch = true;
// Stop search early if one move seems to be much better than the others
if ( Iteration >= 8
&& EasyMove == rml[0].pv[0]
&& ( ( rml[0].nodes > (pos.nodes_searched() * 85) / 100
&& current_search_time() > TimeMgr.available_time() / 16)
||( rml[0].nodes > (pos.nodes_searched() * 98) / 100
&& current_search_time() > TimeMgr.available_time() / 32)))
stopSearch = true;
// Add some extra time if the best move has changed during the last two iterations
if (Iteration > 5 && Iteration <= 50)
TimeMgr.pv_instability(BestMoveChangesByIteration[Iteration],
BestMoveChangesByIteration[Iteration-1]);
// Stop search if most of MaxSearchTime is consumed at the end of the
// iteration. We probably don't have enough time to search the first
// move at the next iteration anyway.
if (current_search_time() > (TimeMgr.available_time() * 80) / 128)
stopSearch = true;
if (stopSearch)
{
if (Pondering)
StopOnPonderhit = true;
else
break;
}
2008-08-31 23:59:13 -06:00
}
if (MaxDepth && Iteration >= MaxDepth)
break;
2008-08-31 23:59:13 -06:00
}
*ponderMove = rml[0].pv[1];
return rml[0].pv[0];
2008-08-31 23:59:13 -06:00
}
// root_search() is the function which searches the root node. It is
// similar to search_pv except that it prints some information to the
// standard output and handles the fail low/high loops.
2008-08-31 23:59:13 -06:00
Value root_search(Position& pos, SearchStack* ss, Value alpha,
Value beta, Depth depth, RootMoveList& rml) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta > alpha && beta <= VALUE_INFINITE);
assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads());
Move movesSearched[MOVES_MAX];
StateInfo st;
Key posKey;
Move move;
Depth ext, newDepth;
ValueType vt;
Value bestValue, value, oldAlpha;
bool isCheck, moveIsCheck, captureOrPromotion, dangerous, isPvMove;
int moveCount = 0;
bestValue = value = -VALUE_INFINITE;
oldAlpha = alpha;
isCheck = pos.is_check();
// Step 1. Initialize node (polling is omitted at root)
ss->currentMove = ss->bestMove = MOVE_NONE;
(ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE;
// Step 2. Check for aborted search (omitted at root)
// Step 3. Mate distance pruning (omitted at root)
// Step 4. Transposition table lookup (omitted at root)
posKey = pos.get_key();
// Step 5. Evaluate the position statically
// At root we do this only to get reference value for child nodes
ss->evalMargin = VALUE_NONE;
ss->eval = isCheck ? VALUE_NONE : evaluate(pos, ss->evalMargin);
// Step 6. Razoring (omitted at root)
// Step 7. Static null move pruning (omitted at root)
// Step 8. Null move search with verification search (omitted at root)
// Step 9. Internal iterative deepening (omitted at root)
2008-08-31 23:59:13 -06:00
CheckInfo ci(pos);
int64_t nodes;
RootMoveList::iterator rm = rml.begin();
bestValue = alpha;
// Step 10. Loop through moves
// Loop through all legal moves until no moves remain or a beta cutoff occurs
while ( bestValue < beta
&& rm != rml.end()
&& !StopRequest)
{
move = ss->currentMove = rm->pv[0];
movesSearched[moveCount++] = move;
isPvMove = (moveCount <= MultiPV);
// This is used by time management
FirstRootMove = (rm == rml.begin());
// Save the current node count before the move is searched
nodes = pos.nodes_searched();
// If it's time to send nodes info, do it here where we have the
// correct accumulated node counts searched by each thread.
if (SendSearchedNodes)
{
SendSearchedNodes = false;
cout << "info nodes " << nodes
<< " nps " << nps(pos)
<< " time " << current_search_time() << endl;
}
if (current_search_time() >= 1000)
cout << "info currmove " << move
<< " currmovenumber " << moveCount << endl;
moveIsCheck = pos.move_is_check(move);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
// Step 11. Decide the new search depth
ext = extension<PV>(pos, move, captureOrPromotion, moveIsCheck, false, false, &dangerous);
newDepth = depth + ext;
// Step 12. Futility pruning (omitted at root)
// Step 13. Make the move
pos.do_move(move, st, ci, moveIsCheck);
// Step extra. pv search
// We do pv search for PV moves
if (isPvMove)
{
// Aspiration window is disabled in multi-pv case
if (MultiPV > 1)
alpha = -VALUE_INFINITE;
// Full depth PV search, done on first move or after a fail high
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
}
else
{
// Step 14. Reduced search
// if the move fails high will be re-searched at full depth
bool doFullDepthSearch = true;
if ( depth >= 3 * ONE_PLY
&& !captureOrPromotion
&& !dangerous
&& !move_is_castle(move)
&& ss->killers[0] != move
&& ss->killers[1] != move)
{
ss->reduction = reduction<PV>(depth, moveCount - MultiPV + 1);
if (ss->reduction)
{
Depth d = newDepth - ss->reduction;
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, 1);
doFullDepthSearch = (value > alpha);
}
ss->reduction = DEPTH_ZERO; // Restore original reduction
}
// Step 15. Full depth search
if (doFullDepthSearch)
{
// Full depth non-pv search using alpha as upperbound
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, 1);
// If we are above alpha then research at same depth but as PV
// to get a correct score or eventually a fail high above beta.
if (value > alpha)
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
}
}
// Step 16. Undo move
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Finished searching the move. If StopRequest is true, the search
// was aborted because the user interrupted the search or because we
// ran out of time. In this case, the return value of the search cannot
// be trusted, and we break out of the loop without updating the best
// move and/or PV.
if (StopRequest)
break;
// Remember searched nodes counts for this move
rm->nodes += pos.nodes_searched() - nodes;
// Step 17. Check for new best move
if (!isPvMove && value <= alpha)
rm->pv_score = -VALUE_INFINITE;
else
{
// PV move or new best move!
// Update PV
ss->bestMove = move;
rm->pv_score = value;
rm->extract_pv_from_tt(pos);
// We record how often the best move has been changed in each
// iteration. This information is used for time managment: When
// the best move changes frequently, we allocate some more time.
if (!isPvMove && MultiPV == 1)
BestMoveChangesByIteration[Iteration]++;
// Inform GUI that PV has changed, in case of multi-pv UCI protocol
// requires we send all the PV lines properly sorted.
rml.sort_multipv(moveCount);
for (int j = 0; j < Min(MultiPV, (int)rml.size()); j++)
cout << rml[j].pv_info_to_uci(pos, alpha, beta, j) << endl;
// Update alpha. In multi-pv we don't use aspiration window
if (MultiPV == 1)
{
// Raise alpha to setup proper non-pv search upper bound
if (value > alpha)
alpha = bestValue = value;
}
else // Set alpha equal to minimum score among the PV lines
alpha = bestValue = rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount?
} // PV move or new best move
++rm;
} // Root moves loop
// Step 20. Update tables
// If the search is not aborted, update the transposition table,
// history counters, and killer moves.
if (!StopRequest)
{
move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove;
vt = bestValue <= oldAlpha ? VALUE_TYPE_UPPER
: bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT;
TT.store(posKey, value_to_tt(bestValue, 0), vt, depth, move, ss->eval, ss->evalMargin);
// Update killers and history only for non capture moves that fails high
if ( bestValue >= beta
&& !pos.move_is_capture_or_promotion(move))
{
update_history(pos, move, depth, movesSearched, moveCount);
update_killers(move, ss->killers);
}
}
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
2008-08-31 23:59:13 -06:00
}
// search<>() is the main search function for both PV and non-PV nodes and for
// normal and SplitPoint nodes. When called just after a split point the search
// is simpler because we have already probed the hash table, done a null move
// search, and searched the first move before splitting, we don't have to repeat
// all this work again. We also don't need to store anything to the hash table
// here: This is taken care of after we return from the split point.
2008-08-31 23:59:13 -06:00
template <NodeType PvNode, bool SpNode>
Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) {
2008-08-31 23:59:13 -06:00
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta > alpha && beta <= VALUE_INFINITE);
assert(PvNode || alpha == beta - 1);
assert(ply > 0 && ply < PLY_MAX);
assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads());
2008-08-31 23:59:13 -06:00
Move movesSearched[MOVES_MAX];
StateInfo st;
const TTEntry *tte;
Key posKey;
Move ttMove, move, excludedMove, threatMove;
Depth ext, newDepth;
ValueType vt;
Value bestValue, value, oldAlpha;
Value refinedValue, nullValue, futilityBase, futilityValueScaled; // Non-PV specific
bool isCheck, singleEvasion, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous;
bool mateThreat = false;
int moveCount = 0;
int threadID = pos.thread();
SplitPoint* sp = NULL;
refinedValue = bestValue = value = -VALUE_INFINITE;
oldAlpha = alpha;
isCheck = pos.is_check();
if (SpNode)
{
sp = ss->sp;
tte = NULL;
ttMove = excludedMove = MOVE_NONE;
threatMove = sp->threatMove;
mateThreat = sp->mateThreat;
goto split_point_start;
}
else {} // Hack to fix icc's "statement is unreachable" warning
// Step 1. Initialize node and poll. Polling can abort search
ss->currentMove = ss->bestMove = threatMove = MOVE_NONE;
(ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE;
if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls)
{
NodesSincePoll = 0;
poll(pos);
}
2008-08-31 23:59:13 -06:00
// Step 2. Check for aborted search and immediate draw
if ( StopRequest
|| ThreadsMgr.cutoff_at_splitpoint(threadID)
|| pos.is_draw()
|| ply >= PLY_MAX - 1)
return VALUE_DRAW;
2008-08-31 23:59:13 -06:00
// Step 3. Mate distance pruning
2008-08-31 23:59:13 -06:00
alpha = Max(value_mated_in(ply), alpha);
beta = Min(value_mate_in(ply+1), beta);
if (alpha >= beta)
return alpha;
2008-08-31 23:59:13 -06:00
// Step 4. Transposition table lookup
// We don't want the score of a partial search to overwrite a previous full search
// TT value, so we use a different position key in case of an excluded move exists.
excludedMove = ss->excludedMove;
posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
tte = TT.retrieve(posKey);
ttMove = tte ? tte->move() : MOVE_NONE;
// At PV nodes, we don't use the TT for pruning, but only for move ordering.
// This is to avoid problems in the following areas:
//
// * Repetition draw detection
// * Fifty move rule detection
// * Searching for a mate
// * Printing of full PV line
if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
{
TT.refresh(tte);
ss->bestMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
2008-08-31 23:59:13 -06:00
}
// Step 5. Evaluate the position statically and
// update gain statistics of parent move.
if (isCheck)
ss->eval = ss->evalMargin = VALUE_NONE;
else if (tte)
{
assert(tte->static_value() != VALUE_NONE);
ss->eval = tte->static_value();
ss->evalMargin = tte->static_value_margin();
refinedValue = refine_eval(tte, ss->eval, ply);
}
else
{
refinedValue = ss->eval = evaluate(pos, ss->evalMargin);
TT.store(posKey, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ss->evalMargin);
}
// Save gain for the parent non-capture move
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
2008-08-31 23:59:13 -06:00
// Step 6. Razoring (is omitted in PV nodes)
if ( !PvNode
&& depth < RazorDepth
&& !isCheck
&& refinedValue < beta - razor_margin(depth)
&& ttMove == MOVE_NONE
&& !value_is_mate(beta)
&& !pos.has_pawn_on_7th(pos.side_to_move()))
{
Value rbeta = beta - razor_margin(depth);
Value v = qsearch<NonPV>(pos, ss, rbeta-1, rbeta, DEPTH_ZERO, ply);
if (v < rbeta)
// Logically we should return (v + razor_margin(depth)), but
// surprisingly this did slightly weaker in tests.
return v;
}
// Step 7. Static null move pruning (is omitted in PV nodes)
// We're betting that the opponent doesn't have a move that will reduce
// the score by more than futility_margin(depth) if we do a null move.
if ( !PvNode
&& !ss->skipNullMove
&& depth < RazorDepth
&& !isCheck
&& refinedValue >= beta + futility_margin(depth, 0)
&& !value_is_mate(beta)
&& pos.non_pawn_material(pos.side_to_move()))
return refinedValue - futility_margin(depth, 0);
// Step 8. Null move search with verification search (is omitted in PV nodes)
if ( !PvNode
&& !ss->skipNullMove
&& depth > ONE_PLY
&& !isCheck
&& refinedValue >= beta
&& !value_is_mate(beta)
&& pos.non_pawn_material(pos.side_to_move()))
{
ss->currentMove = MOVE_NULL;
// Null move dynamic reduction based on depth
int R = 3 + (depth >= 5 * ONE_PLY ? depth / 8 : 0);
// Null move dynamic reduction based on value
if (refinedValue - beta > PawnValueMidgame)
R++;
pos.do_null_move(st);
(ss+1)->skipNullMove = true;
nullValue = -search<NonPV>(pos, ss+1, -beta, -alpha, depth-R*ONE_PLY, ply+1);
(ss+1)->skipNullMove = false;
pos.undo_null_move();
if (nullValue >= beta)
{
// Do not return unproven mate scores
if (nullValue >= value_mate_in(PLY_MAX))
nullValue = beta;
if (depth < 6 * ONE_PLY)
return nullValue;
// Do verification search at high depths
ss->skipNullMove = true;
Value v = search<NonPV>(pos, ss, alpha, beta, depth-R*ONE_PLY, ply);
ss->skipNullMove = false;
if (v >= beta)
return nullValue;
}
else
{
// The null move failed low, which means that we may be faced with
// some kind of threat. If the previous move was reduced, check if
// the move that refuted the null move was somehow connected to the
// move which was reduced. If a connection is found, return a fail
// low score (which will cause the reduced move to fail high in the
// parent node, which will trigger a re-search with full depth).
if (nullValue == value_mated_in(ply + 2))
mateThreat = true;
threatMove = (ss+1)->bestMove;
if ( depth < ThreatDepth
&& (ss-1)->reduction
&& threatMove != MOVE_NONE
&& connected_moves(pos, (ss-1)->currentMove, threatMove))
return beta - 1;
}
}
2008-08-31 23:59:13 -06:00
// Step 9. Internal iterative deepening
if ( depth >= IIDDepth[PvNode]
&& ttMove == MOVE_NONE
&& (PvNode || (!isCheck && ss->eval >= beta - IIDMargin)))
{
Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2);
ss->skipNullMove = true;
search<PvNode>(pos, ss, alpha, beta, d, ply);
ss->skipNullMove = false;
ttMove = ss->bestMove;
tte = TT.retrieve(posKey);
2008-08-31 23:59:13 -06:00
}
// Expensive mate threat detection (only for PV nodes)
if (PvNode)
mateThreat = pos.has_mate_threat();
split_point_start: // At split points actual search starts from here
// Initialize a MovePicker object for the current position
// FIXME currently MovePicker() c'tor is needless called also in SplitPoint
MovePicker mpBase(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta));
MovePicker& mp = SpNode ? *sp->mp : mpBase;
CheckInfo ci(pos);
ss->bestMove = MOVE_NONE;
singleEvasion = !SpNode && isCheck && mp.number_of_evasions() == 1;
futilityBase = ss->eval + ss->evalMargin;
singularExtensionNode = !SpNode
&& depth >= SingularExtensionDepth[PvNode]
&& tte
&& tte->move()
&& !excludedMove // Do not allow recursive singular extension search
&& (tte->type() & VALUE_TYPE_LOWER)
&& tte->depth() >= depth - 3 * ONE_PLY;
if (SpNode)
{
lock_grab(&(sp->lock));
bestValue = sp->bestValue;
}
// Step 10. Loop through moves
// Loop through all legal moves until no moves remain or a beta cutoff occurs
while ( bestValue < beta
&& (move = mp.get_next_move()) != MOVE_NONE
&& !ThreadsMgr.cutoff_at_splitpoint(threadID))
{
assert(move_is_ok(move));
if (SpNode)
{
moveCount = ++sp->moveCount;
lock_release(&(sp->lock));
}
else if (move == excludedMove)
continue;
else
movesSearched[moveCount++] = move;
moveIsCheck = pos.move_is_check(move, ci);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
2008-08-31 23:59:13 -06:00
// Step 11. Decide the new search depth
ext = extension<PvNode>(pos, move, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
// Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s),
// and just one fails high on (alpha, beta), then that move is singular and should be extended.
// To verify this we do a reduced search on all the other moves but the ttMove, if result is
// lower then ttValue minus a margin then we extend ttMove.
if ( singularExtensionNode
&& move == tte->move()
&& ext < ONE_PLY)
{
Value ttValue = value_from_tt(tte->value(), ply);
if (abs(ttValue) < VALUE_KNOWN_WIN)
{
Value b = ttValue - SingularExtensionMargin;
ss->excludedMove = move;
ss->skipNullMove = true;
Value v = search<NonPV>(pos, ss, b - 1, b, depth / 2, ply);
ss->skipNullMove = false;
ss->excludedMove = MOVE_NONE;
ss->bestMove = MOVE_NONE;
if (v < b)
ext = ONE_PLY;
}
}
// Update current move (this must be done after singular extension search)
ss->currentMove = move;
newDepth = depth - ONE_PLY + ext;
// Step 12. Futility pruning (is omitted in PV nodes)
if ( !PvNode
&& !captureOrPromotion
&& !isCheck
&& !dangerous
&& move != ttMove
&& !move_is_castle(move))
{
// Move count based pruning
if ( moveCount >= futility_move_count(depth)
&& !(threatMove && connected_threat(pos, move, threatMove))
&& bestValue > value_mated_in(PLY_MAX)) // FIXME bestValue is racy
{
if (SpNode)
lock_grab(&(sp->lock));
continue;
}
2008-08-31 23:59:13 -06:00
// Value based pruning
// We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth,
// but fixing this made program slightly weaker.
Depth predictedDepth = newDepth - reduction<NonPV>(depth, moveCount);
futilityValueScaled = futilityBase + futility_margin(predictedDepth, moveCount)
+ H.gain(pos.piece_on(move_from(move)), move_to(move));
if (futilityValueScaled < beta)
{
if (SpNode)
{
lock_grab(&(sp->lock));
if (futilityValueScaled > sp->bestValue)
sp->bestValue = bestValue = futilityValueScaled;
}
else if (futilityValueScaled > bestValue)
bestValue = futilityValueScaled;
continue;
2008-08-31 23:59:13 -06:00
}
// Prune moves with negative SEE at low depths
if ( predictedDepth < 2 * ONE_PLY
&& bestValue > value_mated_in(PLY_MAX)
&& pos.see_sign(move) < 0)
{
if (SpNode)
lock_grab(&(sp->lock));
continue;
}
2008-08-31 23:59:13 -06:00
}
// Step 13. Make the move
pos.do_move(move, st, ci, moveIsCheck);
// Step extra. pv search (only in PV nodes)
// The first move in list is the expected PV
if (PvNode && moveCount == 1)
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1);
else
{
// Step 14. Reduced depth search
// If the move fails high will be re-searched at full depth.
bool doFullDepthSearch = true;
if ( depth >= 3 * ONE_PLY
&& !captureOrPromotion
&& !dangerous
&& !move_is_castle(move)
&& ss->killers[0] != move
&& ss->killers[1] != move)
{
ss->reduction = reduction<PvNode>(depth, moveCount);
if (ss->reduction)
{
alpha = SpNode ? sp->alpha : alpha;
Depth d = newDepth - ss->reduction;
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, ply+1);
doFullDepthSearch = (value > alpha);
}
ss->reduction = DEPTH_ZERO; // Restore original reduction
}
// Step 15. Full depth search
if (doFullDepthSearch)
{
alpha = SpNode ? sp->alpha : alpha;
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, ply+1);
// Step extra. pv search (only in PV nodes)
// Search only for possible new PV nodes, if instead value >= beta then
// parent node fails low with value <= alpha and tries another move.
if (PvNode && value > alpha && value < beta)
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1);
}
2008-08-31 23:59:13 -06:00
}
// Step 16. Undo move
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 17. Check for new best move
if (SpNode)
{
lock_grab(&(sp->lock));
bestValue = sp->bestValue;
alpha = sp->alpha;
}
if (value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID)))
{
bestValue = value;
if (SpNode)
sp->bestValue = value;
if (value > alpha)
{
if (PvNode && value < beta) // We want always alpha < beta
{
alpha = value;
if (SpNode)
sp->alpha = value;
}
else if (SpNode)
sp->betaCutoff = true;
if (value == value_mate_in(ply + 1))
ss->mateKiller = move;
ss->bestMove = move;
if (SpNode)
sp->parentSstack->bestMove = move;
}
2008-08-31 23:59:13 -06:00
}
// Step 18. Check for split
if ( !SpNode
&& depth >= ThreadsMgr.min_split_depth()
&& ThreadsMgr.active_threads() > 1
&& bestValue < beta
&& ThreadsMgr.available_thread_exists(threadID)
&& !StopRequest
&& !ThreadsMgr.cutoff_at_splitpoint(threadID)
&& Iteration <= 99)
ThreadsMgr.split<FakeSplit>(pos, ss, ply, &alpha, beta, &bestValue, depth,
threatMove, mateThreat, moveCount, &mp, PvNode);
2008-08-31 23:59:13 -06:00
}
// Step 19. Check for mate and stalemate
// All legal moves have been searched and if there are
// no legal moves, it must be mate or stalemate.
// If one move was excluded return fail low score.
if (!SpNode && !moveCount)
return excludedMove ? oldAlpha : isCheck ? value_mated_in(ply) : VALUE_DRAW;
2008-08-31 23:59:13 -06:00
// Step 20. Update tables
2008-08-31 23:59:13 -06:00
// If the search is not aborted, update the transposition table,
// history counters, and killer moves.
if (!SpNode && !StopRequest && !ThreadsMgr.cutoff_at_splitpoint(threadID))
{
move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove;
vt = bestValue <= oldAlpha ? VALUE_TYPE_UPPER
: bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT;
TT.store(posKey, value_to_tt(bestValue, ply), vt, depth, move, ss->eval, ss->evalMargin);
// Update killers and history only for non capture moves that fails high
if ( bestValue >= beta
&& !pos.move_is_capture_or_promotion(move))
{
update_history(pos, move, depth, movesSearched, moveCount);
update_killers(move, ss->killers);
}
}
if (SpNode)
{
// Here we have the lock still grabbed
sp->slaves[threadID] = 0;
sp->nodes += pos.nodes_searched();
lock_release(&(sp->lock));
2008-08-31 23:59:13 -06:00
}
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
return bestValue;
}
2008-08-31 23:59:13 -06:00
// qsearch() is the quiescence search function, which is called by the main
// search function when the remaining depth is zero (or, to be more precise,
// less than ONE_PLY).
2008-08-31 23:59:13 -06:00
template <NodeType PvNode>
Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) {
2008-08-31 23:59:13 -06:00
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(PvNode || alpha == beta - 1);
2008-08-31 23:59:13 -06:00
assert(depth <= 0);
assert(ply > 0 && ply < PLY_MAX);
assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads());
2008-08-31 23:59:13 -06:00
StateInfo st;
Move ttMove, move;
Value bestValue, value, evalMargin, futilityValue, futilityBase;
bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable;
const TTEntry* tte;
Depth ttDepth;
Value oldAlpha = alpha;
ss->bestMove = ss->currentMove = MOVE_NONE;
2008-08-31 23:59:13 -06:00
// Check for an instant draw or maximum ply reached
if (pos.is_draw() || ply >= PLY_MAX - 1)
return VALUE_DRAW;
2008-08-31 23:59:13 -06:00
// Decide whether or not to include checks, this fixes also the type of
// TT entry depth that we are going to use. Note that in qsearch we use
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
isCheck = pos.is_check();
ttDepth = (isCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS);
// Transposition table lookup. At PV nodes, we don't use the TT for
// pruning, but only for move ordering.
tte = TT.retrieve(pos.get_key());
ttMove = (tte ? tte->move() : MOVE_NONE);
if (!PvNode && tte && ok_to_use_TT(tte, ttDepth, beta, ply))
{
ss->bestMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
}
// Evaluate the position statically
if (isCheck)
{
bestValue = futilityBase = -VALUE_INFINITE;
ss->eval = evalMargin = VALUE_NONE;
enoughMaterial = false;
}
else
{
if (tte)
{
assert(tte->static_value() != VALUE_NONE);
evalMargin = tte->static_value_margin();
ss->eval = bestValue = tte->static_value();
}
else
ss->eval = bestValue = evaluate(pos, evalMargin);
update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval);
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
{
if (!tte)
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin);
return bestValue;
}
if (PvNode && bestValue > alpha)
alpha = bestValue;
// Futility pruning parameters, not needed when in check
futilityBase = ss->eval + evalMargin + FutilityMarginQS;
enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
}
2008-08-31 23:59:13 -06:00
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
// be generated.
MovePicker mp(pos, ttMove, depth, H);
CheckInfo ci(pos);
2008-08-31 23:59:13 -06:00
// Loop through the moves until no moves remain or a beta cutoff occurs
while ( alpha < beta
&& (move = mp.get_next_move()) != MOVE_NONE)
{
assert(move_is_ok(move));
moveIsCheck = pos.move_is_check(move, ci);
2008-08-31 23:59:13 -06:00
// Futility pruning
if ( !PvNode
&& !isCheck
&& !moveIsCheck
&& move != ttMove
&& enoughMaterial
&& !move_is_promotion(move)
&& !pos.move_is_passed_pawn_push(move))
{
futilityValue = futilityBase
+ pos.endgame_value_of_piece_on(move_to(move))
+ (move_is_ep(move) ? PawnValueEndgame : VALUE_ZERO);
if (futilityValue < alpha)
{
if (futilityValue > bestValue)
bestValue = futilityValue;
continue;
}
2008-08-31 23:59:13 -06:00
}
// Detect non-capture evasions that are candidate to be pruned
evasionPrunable = isCheck
&& bestValue > value_mated_in(PLY_MAX)
&& !pos.move_is_capture(move)
&& !pos.can_castle(pos.side_to_move());
// Don't search moves with negative SEE values
if ( !PvNode
&& (!isCheck || evasionPrunable)
&& move != ttMove
&& !move_is_promotion(move)
&& pos.see_sign(move) < 0)
continue;
2008-08-31 23:59:13 -06:00
// Don't search useless checks
if ( !PvNode
&& !isCheck
&& moveIsCheck
&& move != ttMove
&& !pos.move_is_capture_or_promotion(move)
&& ss->eval + PawnValueMidgame / 4 < beta
&& !check_is_dangerous(pos, move, futilityBase, beta, &bestValue))
{
if (ss->eval + PawnValueMidgame / 4 > bestValue)
bestValue = ss->eval + PawnValueMidgame / 4;
continue;
}
// Update current move
ss->currentMove = move;
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
value = -qsearch<PvNode>(pos, ss+1, -beta, -alpha, depth-ONE_PLY, ply+1);
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
alpha = value;
ss->bestMove = move;
}
}
2008-08-31 23:59:13 -06:00
}
// All legal moves have been searched. A special case: If we're in check
// and no legal moves were found, it is checkmate.
if (isCheck && bestValue == -VALUE_INFINITE)
return value_mated_in(ply);
2008-08-31 23:59:13 -06:00
// Update transposition table
ValueType vt = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), vt, ttDepth, ss->bestMove, ss->eval, evalMargin);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
return bestValue;
}
// check_is_dangerous() tests if a checking move can be pruned in qsearch().
// bestValue is updated only when returning false because in that case move
// will be pruned.
bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bestValue)
{
Bitboard b, occ, oldAtt, newAtt, kingAtt;
Square from, to, ksq, victimSq;
Piece pc;
Color them;
Value futilityValue, bv = *bestValue;
from = move_from(move);
to = move_to(move);
them = opposite_color(pos.side_to_move());
ksq = pos.king_square(them);
kingAtt = pos.attacks_from<KING>(ksq);
pc = pos.piece_on(from);
occ = pos.occupied_squares() & ~(1ULL << from) & ~(1ULL << ksq);
oldAtt = pos.attacks_from(pc, from, occ);
newAtt = pos.attacks_from(pc, to, occ);
// Rule 1. Checks which give opponent's king at most one escape square are dangerous
b = kingAtt & ~pos.pieces_of_color(them) & ~newAtt & ~(1ULL << to);
if (!(b && (b & (b - 1))))
return true;
// Rule 2. Queen contact check is very dangerous
if ( type_of_piece(pc) == QUEEN
&& bit_is_set(kingAtt, to))
return true;
// Rule 3. Creating new double threats with checks
b = pos.pieces_of_color(them) & newAtt & ~oldAtt & ~(1ULL << ksq);
while (b)
{
victimSq = pop_1st_bit(&b);
futilityValue = futilityBase + pos.endgame_value_of_piece_on(victimSq);
// Note that here we generate illegal "double move"!
if ( futilityValue >= beta
&& pos.see_sign(make_move(from, victimSq)) >= 0)
return true;
if (futilityValue > bv)
bv = futilityValue;
}
// Update bestValue only if check is not dangerous (because we will prune the move)
*bestValue = bv;
return false;
}
2008-08-31 23:59:13 -06:00
// connected_moves() tests whether two moves are 'connected' in the sense
// that the first move somehow made the second move possible (for instance
// if the moving piece is the same in both moves). The first move is assumed
// to be the move that was made to reach the current position, while the
// second move is assumed to be a move from the current position.
2008-08-31 23:59:13 -06:00
bool connected_moves(const Position& pos, Move m1, Move m2) {
2008-08-31 23:59:13 -06:00
Square f1, t1, f2, t2;
Piece p;
2008-08-31 23:59:13 -06:00
assert(m1 && move_is_ok(m1));
assert(m2 && move_is_ok(m2));
2008-08-31 23:59:13 -06:00
// Case 1: The moving piece is the same in both moves
2008-08-31 23:59:13 -06:00
f2 = move_from(m2);
t1 = move_to(m1);
if (f2 == t1)
return true;
2008-08-31 23:59:13 -06:00
// Case 2: The destination square for m2 was vacated by m1
2008-08-31 23:59:13 -06:00
t2 = move_to(m2);
f1 = move_from(m1);
if (t2 == f1)
return true;
2008-08-31 23:59:13 -06:00
// Case 3: Moving through the vacated square
if ( piece_is_slider(pos.piece_on(f2))
&& bit_is_set(squares_between(f2, t2), f1))
2008-08-31 23:59:13 -06:00
return true;
// Case 4: The destination square for m2 is defended by the moving piece in m1
p = pos.piece_on(t1);
if (bit_is_set(pos.attacks_from(p, t1), t2))
return true;
2008-08-31 23:59:13 -06:00
// Case 5: Discovered check, checking piece is the piece moved in m1
if ( piece_is_slider(p)
&& bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
&& !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2))
{
// discovered_check_candidates() works also if the Position's side to
// move is the opposite of the checking piece.
Color them = opposite_color(pos.side_to_move());
Bitboard dcCandidates = pos.discovered_check_candidates(them);
if (bit_is_set(dcCandidates, f2))
return true;
2008-08-31 23:59:13 -06:00
}
return false;
}
// value_is_mate() checks if the given value is a mate one eventually
// compensated for the ply.
bool value_is_mate(Value value) {
assert(abs(value) <= VALUE_INFINITE);
return value <= value_mated_in(PLY_MAX)
|| value >= value_mate_in(PLY_MAX);
}
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
// "plies to mate from the current ply". Non-mate scores are unchanged.
// The function is called before storing a value to the transposition table.
Value value_to_tt(Value v, int ply) {
if (v >= value_mate_in(PLY_MAX))
return v + ply;
if (v <= value_mated_in(PLY_MAX))
return v - ply;
return v;
}
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score from
// the transposition table to a mate score corrected for the current ply.
Value value_from_tt(Value v, int ply) {
if (v >= value_mate_in(PLY_MAX))
return v - ply;
if (v <= value_mated_in(PLY_MAX))
return v + ply;
return v;
}
2008-08-31 23:59:13 -06:00
// extension() decides whether a move should be searched with normal depth,
// or with extended depth. Certain classes of moves (checking moves, in
// particular) are searched with bigger depth than ordinary moves and in
// any case are marked as 'dangerous'. Note that also if a move is not
// extended, as example because the corresponding UCI option is set to zero,
// the move is marked as 'dangerous' so, at least, we avoid to prune it.
template <NodeType PvNode>
Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck,
bool singleEvasion, bool mateThreat, bool* dangerous) {
assert(m != MOVE_NONE);
Depth result = DEPTH_ZERO;
*dangerous = moveIsCheck | singleEvasion | mateThreat;
2008-08-31 23:59:13 -06:00
if (*dangerous)
{
if (moveIsCheck && pos.see_sign(m) >= 0)
result += CheckExtension[PvNode];
if (singleEvasion)
result += SingleEvasionExtension[PvNode];
if (mateThreat)
result += MateThreatExtension[PvNode];
}
if (pos.type_of_piece_on(move_from(m)) == PAWN)
{
Color c = pos.side_to_move();
if (relative_rank(c, move_to(m)) == RANK_7)
{
result += PawnPushTo7thExtension[PvNode];
*dangerous = true;
}
if (pos.pawn_is_passed(c, move_to(m)))
{
result += PassedPawnExtension[PvNode];
*dangerous = true;
}
}
if ( captureOrPromotion
&& pos.type_of_piece_on(move_to(m)) != PAWN
&& ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
- pos.midgame_value_of_piece_on(move_to(m)) == VALUE_ZERO)
&& !move_is_promotion(m)
&& !move_is_ep(m))
{
result += PawnEndgameExtension[PvNode];
*dangerous = true;
}
if ( PvNode
&& captureOrPromotion
&& pos.type_of_piece_on(move_to(m)) != PAWN
&& pos.see_sign(m) >= 0)
{
result += ONE_PLY / 2;
*dangerous = true;
}
return Min(result, ONE_PLY);
2008-08-31 23:59:13 -06:00
}
// connected_threat() tests whether it is safe to forward prune a move or if
// is somehow coonected to the threat move returned by null search.
2008-08-31 23:59:13 -06:00
bool connected_threat(const Position& pos, Move m, Move threat) {
2008-08-31 23:59:13 -06:00
assert(move_is_ok(m));
assert(threat && move_is_ok(threat));
2008-08-31 23:59:13 -06:00
assert(!pos.move_is_check(m));
assert(!pos.move_is_capture_or_promotion(m));
2008-08-31 23:59:13 -06:00
assert(!pos.move_is_passed_pawn_push(m));
Square mfrom, mto, tfrom, tto;
2008-08-31 23:59:13 -06:00
mfrom = move_from(m);
mto = move_to(m);
tfrom = move_from(threat);
tto = move_to(threat);
// Case 1: Don't prune moves which move the threatened piece
if (mfrom == tto)
return true;
2008-08-31 23:59:13 -06:00
// Case 2: If the threatened piece has value less than or equal to the
2008-08-31 23:59:13 -06:00
// value of the threatening piece, don't prune move which defend it.
if ( pos.move_is_capture(threat)
&& ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
|| pos.type_of_piece_on(tfrom) == KING)
&& pos.move_attacks_square(m, tto))
return true;
2008-08-31 23:59:13 -06:00
// Case 3: If the moving piece in the threatened move is a slider, don't
2008-08-31 23:59:13 -06:00
// prune safe moves which block its ray.
if ( piece_is_slider(pos.piece_on(tfrom))
&& bit_is_set(squares_between(tfrom, tto), mto)
&& pos.see_sign(m) >= 0)
return true;
2008-08-31 23:59:13 -06:00
return false;
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
// ok_to_use_TT() returns true if a transposition table score
// can be used at a given point in search.
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
Value v = value_from_tt(tte->value(), ply);
return ( tte->depth() >= depth
|| v >= Max(value_mate_in(PLY_MAX), beta)
|| v < Min(value_mated_in(PLY_MAX), beta))
&& ( ((tte->type() & VALUE_TYPE_LOWER) && v >= beta)
|| ((tte->type() & VALUE_TYPE_UPPER) && v < beta));
}
// refine_eval() returns the transposition table score if
// possible otherwise falls back on static position evaluation.
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) {
assert(tte);
Value v = value_from_tt(tte->value(), ply);
if ( ((tte->type() & VALUE_TYPE_LOWER) && v >= defaultEval)
|| ((tte->type() & VALUE_TYPE_UPPER) && v < defaultEval))
return v;
return defaultEval;
}
// update_history() registers a good move that produced a beta-cutoff
// in history and marks as failures all the other moves of that ply.
void update_history(const Position& pos, Move move, Depth depth,
Move movesSearched[], int moveCount) {
Move m;
Value bonus = Value(int(depth) * int(depth));
H.update(pos.piece_on(move_from(move)), move_to(move), bonus);
for (int i = 0; i < moveCount - 1; i++)
{
m = movesSearched[i];
assert(m != move);
if (!pos.move_is_capture_or_promotion(m))
H.update(pos.piece_on(move_from(m)), move_to(m), -bonus);
}
}
// update_killers() add a good move that produced a beta-cutoff
// among the killer moves of that ply.
void update_killers(Move m, Move killers[]) {
if (m == killers[0])
return;
killers[1] = killers[0];
killers[0] = m;
}
// update_gains() updates the gains table of a non-capture move given
// the static position evaluation before and after the move.
void update_gains(const Position& pos, Move m, Value before, Value after) {
if ( m != MOVE_NULL
&& before != VALUE_NONE
&& after != VALUE_NONE
&& pos.captured_piece_type() == PIECE_TYPE_NONE
&& !move_is_special(m))
H.update_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
}
// init_ss_array() does a fast reset of the first entries of a SearchStack
// array and of all the excludedMove and skipNullMove entries.
2008-08-31 23:59:13 -06:00
void init_ss_array(SearchStack* ss, int size) {
for (int i = 0; i < size; i++, ss++)
{
ss->excludedMove = MOVE_NONE;
ss->skipNullMove = false;
ss->reduction = DEPTH_ZERO;
ss->sp = NULL;
if (i < 3)
ss->killers[0] = ss->killers[1] = ss->mateKiller = MOVE_NONE;
}
2008-08-31 23:59:13 -06:00
}
// value_to_uci() converts a value to a string suitable for use with the UCI
// protocol specifications:
//
// cp <x> The score from the engine's point of view in centipawns.
// mate <y> Mate in y moves, not plies. If the engine is getting mated
// use negative values for y.
std::string value_to_uci(Value v) {
std::stringstream s;
if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY)
s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns
else
s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2 );
return s.str();
}
// current_search_time() returns the number of milliseconds which have passed
// since the beginning of the current search.
int current_search_time() {
return get_system_time() - SearchStartTime;
}
// nps() computes the current nodes/second count
2008-08-31 23:59:13 -06:00
int nps(const Position& pos) {
2008-08-31 23:59:13 -06:00
int t = current_search_time();
return (t > 0 ? int((pos.nodes_searched() * 1000) / t) : 0);
2008-08-31 23:59:13 -06:00
}
// poll() performs two different functions: It polls for user input, and it
2008-08-31 23:59:13 -06:00
// looks at the time consumed so far and decides if it's time to abort the
// search.
void poll(const Position& pos) {
2008-08-31 23:59:13 -06:00
static int lastInfoTime;
int t = current_search_time();
2008-08-31 23:59:13 -06:00
// Poll for input
if (input_available())
{
// We are line oriented, don't read single chars
std::string command;
if (!std::getline(std::cin, command))
command = "quit";
if (command == "quit")
{
// Quit the program as soon as possible
Pondering = false;
QuitRequest = StopRequest = true;
return;
}
else if (command == "stop")
{
// Stop calculating as soon as possible, but still send the "bestmove"
// and possibly the "ponder" token when finishing the search.
Pondering = false;
StopRequest = true;
}
else if (command == "ponderhit")
{
// The opponent has played the expected move. GUI sends "ponderhit" if
// we were told to ponder on the same move the opponent has played. We
// should continue searching but switching from pondering to normal search.
Pondering = false;
if (StopOnPonderhit)
StopRequest = true;
}
2008-08-31 23:59:13 -06:00
}
// Print search information
if (t < 1000)
lastInfoTime = 0;
else if (lastInfoTime > t)
// HACK: Must be a new search where we searched less than
// NodesBetweenPolls nodes during the first second of search.
lastInfoTime = 0;
2008-08-31 23:59:13 -06:00
else if (t - lastInfoTime >= 1000)
{
lastInfoTime = t;
if (dbg_show_mean)
dbg_print_mean();
if (dbg_show_hit_rate)
dbg_print_hit_rate();
// Send info on searched nodes as soon as we return to root
SendSearchedNodes = true;
}
2008-08-31 23:59:13 -06:00
// Should we stop the search?
if (Pondering)
return;
bool stillAtFirstMove = FirstRootMove
&& !AspirationFailLow
&& t > TimeMgr.available_time();
bool noMoreTime = t > TimeMgr.maximum_time()
|| stillAtFirstMove;
if ( (UseTimeManagement && noMoreTime)
|| (ExactMaxTime && t >= ExactMaxTime)
|| (MaxNodes && pos.nodes_searched() >= MaxNodes)) // FIXME
StopRequest = true;
2008-08-31 23:59:13 -06:00
}
// wait_for_stop_or_ponderhit() is called when the maximum depth is reached
// while the program is pondering. The point is to work around a wrinkle in
// the UCI protocol: When pondering, the engine is not allowed to give a
2008-08-31 23:59:13 -06:00
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
// We simply wait here until one of these commands is sent, and return,
// after which the bestmove and pondermove will be printed.
2008-08-31 23:59:13 -06:00
void wait_for_stop_or_ponderhit() {
2008-08-31 23:59:13 -06:00
std::string command;
while (true)
{
// Wait for a command from stdin
if (!std::getline(std::cin, command))
command = "quit";
if (command == "quit")
{
QuitRequest = true;
break;
}
else if (command == "ponderhit" || command == "stop")
break;
2008-08-31 23:59:13 -06:00
}
}
// init_thread() is the function which is called when a new thread is
// launched. It simply calls the idle_loop() function with the supplied
// threadID. There are two versions of this function; one for POSIX
// threads and one for Windows threads.
#if !defined(_MSC_VER)
void* init_thread(void* threadID) {
ThreadsMgr.idle_loop(*(int*)threadID, NULL);
return NULL;
}
#else
DWORD WINAPI init_thread(LPVOID threadID) {
ThreadsMgr.idle_loop(*(int*)threadID, NULL);
return 0;
}
#endif
/// The ThreadsManager class
// read_uci_options() updates number of active threads and other internal
// parameters according to the UCI options values. It is called before
// to start a new search.
void ThreadsManager::read_uci_options() {
maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value<int>();
minimumSplitDepth = Options["Minimum Split Depth"].value<int>() * ONE_PLY;
useSleepingThreads = Options["Use Sleeping Threads"].value<bool>();
activeThreads = Options["Threads"].value<int>();
}
2008-08-31 23:59:13 -06:00
// idle_loop() is where the threads are parked when they have no work to do.
// The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint
2008-08-31 23:59:13 -06:00
// object for which the current thread is the master.
void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) {
assert(threadID >= 0 && threadID < MAX_THREADS);
2008-08-31 23:59:13 -06:00
int i;
bool allFinished = false;
while (true)
{
// Slave threads can exit as soon as AllThreadsShouldExit raises,
// master should exit as last one.
if (allThreadsShouldExit)
{
assert(!sp);
threads[threadID].state = THREAD_TERMINATED;
return;
}
// If we are not thinking, wait for a condition to be signaled
// instead of wasting CPU time polling for work.
while ( threadID >= activeThreads || threads[threadID].state == THREAD_INITIALIZING
|| (useSleepingThreads && threads[threadID].state == THREAD_AVAILABLE))
{
assert(!sp || useSleepingThreads);
assert(threadID != 0 || useSleepingThreads);
if (threads[threadID].state == THREAD_INITIALIZING)
threads[threadID].state = THREAD_AVAILABLE;
// Grab the lock to avoid races with wake_sleeping_thread()
lock_grab(&sleepLock[threadID]);
// If we are master and all slaves have finished do not go to sleep
for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {}
allFinished = (i == activeThreads);
if (allFinished || allThreadsShouldExit)
{
lock_release(&sleepLock[threadID]);
break;
}
// Do sleep here after retesting sleep conditions
if (threadID >= activeThreads || threads[threadID].state == THREAD_AVAILABLE)
cond_wait(&sleepCond[threadID], &sleepLock[threadID]);
lock_release(&sleepLock[threadID]);
}
2008-08-31 23:59:13 -06:00
// If this thread has been assigned work, launch a search
if (threads[threadID].state == THREAD_WORKISWAITING)
{
assert(!allThreadsShouldExit);
threads[threadID].state = THREAD_SEARCHING;
// Here we call search() with SplitPoint template parameter set to true
SplitPoint* tsp = threads[threadID].splitPoint;
Position pos(*tsp->pos, threadID);
SearchStack* ss = tsp->sstack[threadID] + 1;
ss->sp = tsp;
if (tsp->pvNode)
search<PV, true>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
else
search<NonPV, true>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
assert(threads[threadID].state == THREAD_SEARCHING);
threads[threadID].state = THREAD_AVAILABLE;
// Wake up master thread so to allow it to return from the idle loop in
// case we are the last slave of the split point.
if (useSleepingThreads && threadID != tsp->master && threads[tsp->master].state == THREAD_AVAILABLE)
wake_sleeping_thread(tsp->master);
}
2008-08-31 23:59:13 -06:00
// If this thread is the master of a split point and all slaves have
// finished their work at this split point, return from the idle loop.
for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {}
allFinished = (i == activeThreads);
if (allFinished)
{
// Because sp->slaves[] is reset under lock protection,
// be sure sp->lock has been released before to return.
lock_grab(&(sp->lock));
lock_release(&(sp->lock));
// In helpful master concept a master can help only a sub-tree, and
// because here is all finished is not possible master is booked.
assert(threads[threadID].state == THREAD_AVAILABLE);
threads[threadID].state = THREAD_SEARCHING;
return;
}
2008-08-31 23:59:13 -06:00
}
}
// init_threads() is called during startup. It launches all helper threads,
// and initializes the split point stack and the global locks and condition
// objects.
2008-08-31 23:59:13 -06:00
void ThreadsManager::init_threads() {
int i, arg[MAX_THREADS];
bool ok;
// Initialize global locks
lock_init(&mpLock);
for (i = 0; i < MAX_THREADS; i++)
{
lock_init(&sleepLock[i]);
cond_init(&sleepCond[i]);
}
// Initialize splitPoints[] locks
for (i = 0; i < MAX_THREADS; i++)
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
lock_init(&(threads[i].splitPoints[j].lock));
// Will be set just before program exits to properly end the threads
allThreadsShouldExit = false;
// Threads will be put all threads to sleep as soon as created
activeThreads = 1;
// All threads except the main thread should be initialized to THREAD_INITIALIZING
threads[0].state = THREAD_SEARCHING;
for (i = 1; i < MAX_THREADS; i++)
threads[i].state = THREAD_INITIALIZING;
// Launch the helper threads
for (i = 1; i < MAX_THREADS; i++)
{
arg[i] = i;
#if !defined(_MSC_VER)
pthread_t pthread[1];
ok = (pthread_create(pthread, NULL, init_thread, (void*)(&arg[i])) == 0);
pthread_detach(pthread[0]);
#else
ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&arg[i]), 0, NULL) != NULL);
#endif
if (!ok)
{
cout << "Failed to create thread number " << i << endl;
exit(EXIT_FAILURE);
}
// Wait until the thread has finished launching and is gone to sleep
while (threads[i].state == THREAD_INITIALIZING) {}
}
2008-08-31 23:59:13 -06:00
}
// exit_threads() is called when the program exits. It makes all the
// helper threads exit cleanly.
void ThreadsManager::exit_threads() {
2008-08-31 23:59:13 -06:00
allThreadsShouldExit = true; // Let the woken up threads to exit idle_loop()
// Wake up all the threads and waits for termination
for (int i = 1; i < MAX_THREADS; i++)
{
wake_sleeping_thread(i);
while (threads[i].state != THREAD_TERMINATED) {}
}
// Now we can safely destroy the locks
for (int i = 0; i < MAX_THREADS; i++)
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
lock_destroy(&(threads[i].splitPoints[j].lock));
lock_destroy(&mpLock);
// Now we can safely destroy the wait conditions
for (int i = 0; i < MAX_THREADS; i++)
{
lock_destroy(&sleepLock[i]);
cond_destroy(&sleepCond[i]);
}
}
2008-08-31 23:59:13 -06:00
// cutoff_at_splitpoint() checks whether a beta cutoff has occurred in
// the thread's currently active split point, or in some ancestor of
// the current split point.
2008-08-31 23:59:13 -06:00
bool ThreadsManager::cutoff_at_splitpoint(int threadID) const {
assert(threadID >= 0 && threadID < activeThreads);
SplitPoint* sp = threads[threadID].splitPoint;
2008-08-31 23:59:13 -06:00
for ( ; sp && !sp->betaCutoff; sp = sp->parent) {}
return sp != NULL;
}
2008-08-31 23:59:13 -06:00
// thread_is_available() checks whether the thread with threadID "slave" is
// available to help the thread with threadID "master" at a split point. An
// obvious requirement is that "slave" must be idle. With more than two
2008-08-31 23:59:13 -06:00
// threads, this is not by itself sufficient: If "slave" is the master of
// some active split point, it is only available as a slave to the other
// threads which are busy searching the split point at the top of "slave"'s
// split point stack (the "helpful master concept" in YBWC terminology).
bool ThreadsManager::thread_is_available(int slave, int master) const {
assert(slave >= 0 && slave < activeThreads);
assert(master >= 0 && master < activeThreads);
assert(activeThreads > 1);
if (threads[slave].state != THREAD_AVAILABLE || slave == master)
return false;
2008-08-31 23:59:13 -06:00
// Make a local copy to be sure doesn't change under our feet
int localActiveSplitPoints = threads[slave].activeSplitPoints;
// No active split points means that the thread is available as
// a slave for any other thread.
if (localActiveSplitPoints == 0 || activeThreads == 2)
return true;
2008-08-31 23:59:13 -06:00
// Apply the "helpful master" concept if possible. Use localActiveSplitPoints
// that is known to be > 0, instead of threads[slave].activeSplitPoints that
// could have been set to 0 by another thread leading to an out of bound access.
if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master])
return true;
2008-08-31 23:59:13 -06:00
return false;
}
// available_thread_exists() tries to find an idle thread which is available as
2008-08-31 23:59:13 -06:00
// a slave for the thread with threadID "master".
bool ThreadsManager::available_thread_exists(int master) const {
assert(master >= 0 && master < activeThreads);
assert(activeThreads > 1);
for (int i = 0; i < activeThreads; i++)
if (thread_is_available(i, master))
return true;
2008-08-31 23:59:13 -06:00
return false;
}
// split() does the actual work of distributing the work at a node between
// several available threads. If it does not succeed in splitting the
2008-08-31 23:59:13 -06:00
// node (because no idle threads are available, or because we have no unused
// split point objects), the function immediately returns. If splitting is
// possible, a SplitPoint object is initialized with all the data that must be
// copied to the helper threads and we tell our helper threads that they have
// been assigned work. This will cause them to instantly leave their idle loops and
// call search().When all threads have returned from search() then split() returns.
2008-08-31 23:59:13 -06:00
template <bool Fake>
void ThreadsManager::split(Position& pos, SearchStack* ss, int ply, Value* alpha,
const Value beta, Value* bestValue, Depth depth, Move threatMove,
bool mateThreat, int moveCount, MovePicker* mp, bool pvNode) {
assert(pos.is_ok());
assert(ply > 0 && ply < PLY_MAX);
assert(*bestValue >= -VALUE_INFINITE);
assert(*bestValue <= *alpha);
assert(*alpha < beta);
assert(beta <= VALUE_INFINITE);
assert(depth > DEPTH_ZERO);
assert(pos.thread() >= 0 && pos.thread() < activeThreads);
assert(activeThreads > 1);
2008-08-31 23:59:13 -06:00
int i, master = pos.thread();
Thread& masterThread = threads[master];
lock_grab(&mpLock);
2008-08-31 23:59:13 -06:00
// If no other thread is available to help us, or if we have too many
// active split points, don't split.
if ( !available_thread_exists(master)
|| masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
{
lock_release(&mpLock);
return;
2008-08-31 23:59:13 -06:00
}
// Pick the next available split point object from the split point stack
SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++];
2008-08-31 23:59:13 -06:00
// Initialize the split point object
splitPoint.parent = masterThread.splitPoint;
splitPoint.master = master;
splitPoint.betaCutoff = false;
splitPoint.ply = ply;
splitPoint.depth = depth;
splitPoint.threatMove = threatMove;
splitPoint.mateThreat = mateThreat;
splitPoint.alpha = *alpha;
splitPoint.beta = beta;
splitPoint.pvNode = pvNode;
splitPoint.bestValue = *bestValue;
splitPoint.mp = mp;
splitPoint.moveCount = moveCount;
splitPoint.pos = &pos;
splitPoint.nodes = 0;
splitPoint.parentSstack = ss;
for (i = 0; i < activeThreads; i++)
splitPoint.slaves[i] = 0;
masterThread.splitPoint = &splitPoint;
2008-08-31 23:59:13 -06:00
// If we are here it means we are not available
assert(masterThread.state != THREAD_AVAILABLE);
int workersCnt = 1; // At least the master is included
// Allocate available threads setting state to THREAD_BOOKED
for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++)
if (thread_is_available(i, master))
{
threads[i].state = THREAD_BOOKED;
threads[i].splitPoint = &splitPoint;
splitPoint.slaves[i] = 1;
workersCnt++;
}
2008-08-31 23:59:13 -06:00
assert(Fake || workersCnt > 1);
// We can release the lock because slave threads are already booked and master is not available
lock_release(&mpLock);
// Tell the threads that they have work to do. This will make them leave
// their idle loop. But before copy search stack tail for each thread.
for (i = 0; i < activeThreads; i++)
if (i == master || splitPoint.slaves[i])
{
memcpy(splitPoint.sstack[i], ss - 1, 4 * sizeof(SearchStack));
assert(i == master || threads[i].state == THREAD_BOOKED);
threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
if (useSleepingThreads && i != master)
wake_sleeping_thread(i);
}
2008-08-31 23:59:13 -06:00
// Everything is set up. The master thread enters the idle loop, from
// which it will instantly launch a search, because its state is
// THREAD_WORKISWAITING. We send the split point as a second parameter to the
2008-08-31 23:59:13 -06:00
// idle loop, which means that the main thread will return from the idle
// loop when all threads have finished their work at this split point.
idle_loop(master, &splitPoint);
2008-08-31 23:59:13 -06:00
// We have returned from the idle loop, which means that all threads are
// finished. Update alpha and bestValue, and return.
lock_grab(&mpLock);
*alpha = splitPoint.alpha;
*bestValue = splitPoint.bestValue;
masterThread.activeSplitPoints--;
masterThread.splitPoint = splitPoint.parent;
pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes);
2008-08-31 23:59:13 -06:00
lock_release(&mpLock);
2008-08-31 23:59:13 -06:00
}
// wake_sleeping_thread() wakes up the thread with the given threadID
// when it is time to start a new search.
2008-08-31 23:59:13 -06:00
void ThreadsManager::wake_sleeping_thread(int threadID) {
lock_grab(&sleepLock[threadID]);
cond_signal(&sleepCond[threadID]);
lock_release(&sleepLock[threadID]);
2008-08-31 23:59:13 -06:00
}
2008-08-31 23:59:13 -06:00
/// RootMove and RootMoveList method's definitions
RootMove::RootMove() {
nodes = 0;
pv_score = non_pv_score = -VALUE_INFINITE;
pv[0] = MOVE_NONE;
}
RootMove& RootMove::operator=(const RootMove& rm) {
const Move* src = rm.pv;
Move* dst = pv;
// Avoid a costly full rm.pv[] copy
do *dst++ = *src; while (*src++ != MOVE_NONE);
nodes = rm.nodes;
pv_score = rm.pv_score;
non_pv_score = rm.non_pv_score;
return *this;
}
// extract_pv_from_tt() builds a PV by adding moves from the transposition table.
// We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This
// allow to always have a ponder move even when we fail high at root and also a
// long PV to print that is important for position analysis.
void RootMove::extract_pv_from_tt(Position& pos) {
StateInfo state[PLY_MAX_PLUS_2], *st = state;
TTEntry* tte;
int ply = 1;
assert(pv[0] != MOVE_NONE && move_is_legal(pos, pv[0]));
pos.do_move(pv[0], *st++);
while ( (tte = TT.retrieve(pos.get_key())) != NULL
&& tte->move() != MOVE_NONE
&& move_is_legal(pos, tte->move())
&& ply < PLY_MAX
&& (!pos.is_draw() || ply < 2))
{
pv[ply] = tte->move();
pos.do_move(pv[ply++], *st++);
}
pv[ply] = MOVE_NONE;
do pos.undo_move(pv[--ply]); while (ply);
}
// insert_pv_in_tt() is called at the end of a search iteration, and inserts
// the PV back into the TT. This makes sure the old PV moves are searched
// first, even if the old TT entries have been overwritten.
void RootMove::insert_pv_in_tt(Position& pos) {
StateInfo state[PLY_MAX_PLUS_2], *st = state;
TTEntry* tte;
Key k;
Value v, m = VALUE_NONE;
int ply = 0;
assert(pv[0] != MOVE_NONE && move_is_legal(pos, pv[0]));
do {
k = pos.get_key();
tte = TT.retrieve(k);
// Don't overwrite exsisting correct entries
if (!tte || tte->move() != pv[ply])
{
v = (pos.is_check() ? VALUE_NONE : evaluate(pos, m));
TT.store(k, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[ply], v, m);
}
pos.do_move(pv[ply], *st++);
} while (pv[++ply] != MOVE_NONE);
do pos.undo_move(pv[--ply]); while (ply);
}
// pv_info_to_uci() returns a string with information on the current PV line
// formatted according to UCI specification and eventually writes the info
// to a log file. It is called at each iteration or after a new pv is found.
std::string RootMove::pv_info_to_uci(Position& pos, Value alpha, Value beta, int pvLine) {
std::stringstream s, l;
Move* m = pv;
while (*m != MOVE_NONE)
l << *m++ << " ";
s << "info depth " << Iteration // FIXME
<< " seldepth " << int(m - pv)
<< " multipv " << pvLine + 1
<< " score " << value_to_uci(pv_score)
<< (pv_score >= beta ? " lowerbound" : pv_score <= alpha ? " upperbound" : "")
<< " time " << current_search_time()
<< " nodes " << pos.nodes_searched()
<< " nps " << nps(pos)
<< " pv " << l.str();
if (UseLogFile && pvLine == 0)
{
ValueType t = pv_score >= beta ? VALUE_TYPE_LOWER :
pv_score <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT;
LogFile << pretty_pv(pos, current_search_time(), Iteration, pv_score, t, pv) << endl;
}
return s.str();
}
RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) {
SearchStack ss[PLY_MAX_PLUS_2];
MoveStack mlist[MOVES_MAX];
StateInfo st;
Move* sm;
// Initialize search stack
init_ss_array(ss, PLY_MAX_PLUS_2);
ss[0].eval = ss[0].evalMargin = VALUE_NONE;
// Generate all legal moves
MoveStack* last = generate<MV_LEGAL>(pos, mlist);
// Add each move to the RootMoveList's vector
for (MoveStack* cur = mlist; cur != last; cur++)
{
// If we have a searchMoves[] list then verify cur->move
// is in the list before to add it.
for (sm = searchMoves; *sm && *sm != cur->move; sm++) {}
if (searchMoves[0] && *sm != cur->move)
continue;
// Find a quick score for the move and add to the list
pos.do_move(cur->move, st);
RootMove rm;
rm.pv[0] = ss[0].currentMove = cur->move;
rm.pv[1] = MOVE_NONE;
rm.pv_score = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, DEPTH_ZERO, 1);
push_back(rm);
pos.undo_move(cur->move);
}
sort();
2008-08-31 23:59:13 -06:00
}
// Score root moves using the standard way used in main search, the moves
// are scored according to the order in which are returned by MovePicker.
// This is the second order score that is used to compare the moves when
// the first order pv scores of both moves are equal.
2008-08-31 23:59:13 -06:00
void RootMoveList::set_non_pv_scores(const Position& pos, Move ttm, SearchStack* ss)
{
Move move;
Value score = VALUE_ZERO;
MovePicker mp(pos, ttm, ONE_PLY, H, ss);
while ((move = mp.get_next_move()) != MOVE_NONE)
for (Base::iterator it = begin(); it != end(); ++it)
if (it->pv[0] == move)
{
it->non_pv_score = score--;
break;
}
}
} // namespace