alistair23-linux/drivers/gpu/drm/radeon/evergreen.c

3341 lines
102 KiB
C
Raw Normal View History

/*
* Copyright 2010 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include <linux/firmware.h>
#include <linux/platform_device.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include "drmP.h"
#include "radeon.h"
#include "radeon_asic.h"
#include "radeon_drm.h"
#include "evergreend.h"
#include "atom.h"
#include "avivod.h"
#include "evergreen_reg.h"
#include "evergreen_blit_shaders.h"
#define EVERGREEN_PFP_UCODE_SIZE 1120
#define EVERGREEN_PM4_UCODE_SIZE 1376
static void evergreen_gpu_init(struct radeon_device *rdev);
void evergreen_fini(struct radeon_device *rdev);
static void evergreen_pcie_gen2_enable(struct radeon_device *rdev);
void evergreen_pre_page_flip(struct radeon_device *rdev, int crtc)
{
/* enable the pflip int */
radeon_irq_kms_pflip_irq_get(rdev, crtc);
}
void evergreen_post_page_flip(struct radeon_device *rdev, int crtc)
{
/* disable the pflip int */
radeon_irq_kms_pflip_irq_put(rdev, crtc);
}
u32 evergreen_page_flip(struct radeon_device *rdev, int crtc_id, u64 crtc_base)
{
struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id];
u32 tmp = RREG32(EVERGREEN_GRPH_UPDATE + radeon_crtc->crtc_offset);
/* Lock the graphics update lock */
tmp |= EVERGREEN_GRPH_UPDATE_LOCK;
WREG32(EVERGREEN_GRPH_UPDATE + radeon_crtc->crtc_offset, tmp);
/* update the scanout addresses */
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset,
upper_32_bits(crtc_base));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset,
(u32)crtc_base);
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset,
upper_32_bits(crtc_base));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset,
(u32)crtc_base);
/* Wait for update_pending to go high. */
while (!(RREG32(EVERGREEN_GRPH_UPDATE + radeon_crtc->crtc_offset) & EVERGREEN_GRPH_SURFACE_UPDATE_PENDING));
DRM_DEBUG("Update pending now high. Unlocking vupdate_lock.\n");
/* Unlock the lock, so double-buffering can take place inside vblank */
tmp &= ~EVERGREEN_GRPH_UPDATE_LOCK;
WREG32(EVERGREEN_GRPH_UPDATE + radeon_crtc->crtc_offset, tmp);
/* Return current update_pending status: */
return RREG32(EVERGREEN_GRPH_UPDATE + radeon_crtc->crtc_offset) & EVERGREEN_GRPH_SURFACE_UPDATE_PENDING;
}
/* get temperature in millidegrees */
int evergreen_get_temp(struct radeon_device *rdev)
{
u32 temp, toffset;
int actual_temp = 0;
if (rdev->family == CHIP_JUNIPER) {
toffset = (RREG32(CG_THERMAL_CTRL) & TOFFSET_MASK) >>
TOFFSET_SHIFT;
temp = (RREG32(CG_TS0_STATUS) & TS0_ADC_DOUT_MASK) >>
TS0_ADC_DOUT_SHIFT;
if (toffset & 0x100)
actual_temp = temp / 2 - (0x200 - toffset);
else
actual_temp = temp / 2 + toffset;
actual_temp = actual_temp * 1000;
} else {
temp = (RREG32(CG_MULT_THERMAL_STATUS) & ASIC_T_MASK) >>
ASIC_T_SHIFT;
if (temp & 0x400)
actual_temp = -256;
else if (temp & 0x200)
actual_temp = 255;
else if (temp & 0x100) {
actual_temp = temp & 0x1ff;
actual_temp |= ~0x1ff;
} else
actual_temp = temp & 0xff;
actual_temp = (actual_temp * 1000) / 2;
}
return actual_temp;
}
int sumo_get_temp(struct radeon_device *rdev)
{
u32 temp = RREG32(CG_THERMAL_STATUS) & 0xff;
int actual_temp = temp - 49;
return actual_temp * 1000;
}
void evergreen_pm_misc(struct radeon_device *rdev)
{
int req_ps_idx = rdev->pm.requested_power_state_index;
int req_cm_idx = rdev->pm.requested_clock_mode_index;
struct radeon_power_state *ps = &rdev->pm.power_state[req_ps_idx];
struct radeon_voltage *voltage = &ps->clock_info[req_cm_idx].voltage;
if (voltage->type == VOLTAGE_SW) {
/* 0xff01 is a flag rather then an actual voltage */
if (voltage->voltage == 0xff01)
return;
if (voltage->voltage && (voltage->voltage != rdev->pm.current_vddc)) {
radeon_atom_set_voltage(rdev, voltage->voltage, SET_VOLTAGE_TYPE_ASIC_VDDC);
rdev->pm.current_vddc = voltage->voltage;
DRM_DEBUG("Setting: vddc: %d\n", voltage->voltage);
}
/* 0xff01 is a flag rather then an actual voltage */
if (voltage->vddci == 0xff01)
return;
if (voltage->vddci && (voltage->vddci != rdev->pm.current_vddci)) {
radeon_atom_set_voltage(rdev, voltage->vddci, SET_VOLTAGE_TYPE_ASIC_VDDCI);
rdev->pm.current_vddci = voltage->vddci;
DRM_DEBUG("Setting: vddci: %d\n", voltage->vddci);
}
}
}
void evergreen_pm_prepare(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
u32 tmp;
/* disable any active CRTCs */
list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->enabled) {
tmp = RREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset);
tmp |= EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE;
WREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset, tmp);
}
}
}
void evergreen_pm_finish(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
u32 tmp;
/* enable any active CRTCs */
list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->enabled) {
tmp = RREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset);
tmp &= ~EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE;
WREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset, tmp);
}
}
}
bool evergreen_hpd_sense(struct radeon_device *rdev, enum radeon_hpd_id hpd)
{
bool connected = false;
switch (hpd) {
case RADEON_HPD_1:
if (RREG32(DC_HPD1_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case RADEON_HPD_2:
if (RREG32(DC_HPD2_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case RADEON_HPD_3:
if (RREG32(DC_HPD3_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case RADEON_HPD_4:
if (RREG32(DC_HPD4_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case RADEON_HPD_5:
if (RREG32(DC_HPD5_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
case RADEON_HPD_6:
if (RREG32(DC_HPD6_INT_STATUS) & DC_HPDx_SENSE)
connected = true;
break;
default:
break;
}
return connected;
}
void evergreen_hpd_set_polarity(struct radeon_device *rdev,
enum radeon_hpd_id hpd)
{
u32 tmp;
bool connected = evergreen_hpd_sense(rdev, hpd);
switch (hpd) {
case RADEON_HPD_1:
tmp = RREG32(DC_HPD1_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD1_INT_CONTROL, tmp);
break;
case RADEON_HPD_2:
tmp = RREG32(DC_HPD2_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD2_INT_CONTROL, tmp);
break;
case RADEON_HPD_3:
tmp = RREG32(DC_HPD3_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD3_INT_CONTROL, tmp);
break;
case RADEON_HPD_4:
tmp = RREG32(DC_HPD4_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD4_INT_CONTROL, tmp);
break;
case RADEON_HPD_5:
tmp = RREG32(DC_HPD5_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD5_INT_CONTROL, tmp);
break;
case RADEON_HPD_6:
tmp = RREG32(DC_HPD6_INT_CONTROL);
if (connected)
tmp &= ~DC_HPDx_INT_POLARITY;
else
tmp |= DC_HPDx_INT_POLARITY;
WREG32(DC_HPD6_INT_CONTROL, tmp);
break;
default:
break;
}
}
void evergreen_hpd_init(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_connector *connector;
u32 tmp = DC_HPDx_CONNECTION_TIMER(0x9c4) |
DC_HPDx_RX_INT_TIMER(0xfa) | DC_HPDx_EN;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
switch (radeon_connector->hpd.hpd) {
case RADEON_HPD_1:
WREG32(DC_HPD1_CONTROL, tmp);
rdev->irq.hpd[0] = true;
break;
case RADEON_HPD_2:
WREG32(DC_HPD2_CONTROL, tmp);
rdev->irq.hpd[1] = true;
break;
case RADEON_HPD_3:
WREG32(DC_HPD3_CONTROL, tmp);
rdev->irq.hpd[2] = true;
break;
case RADEON_HPD_4:
WREG32(DC_HPD4_CONTROL, tmp);
rdev->irq.hpd[3] = true;
break;
case RADEON_HPD_5:
WREG32(DC_HPD5_CONTROL, tmp);
rdev->irq.hpd[4] = true;
break;
case RADEON_HPD_6:
WREG32(DC_HPD6_CONTROL, tmp);
rdev->irq.hpd[5] = true;
break;
default:
break;
}
}
if (rdev->irq.installed)
evergreen_irq_set(rdev);
}
void evergreen_hpd_fini(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
switch (radeon_connector->hpd.hpd) {
case RADEON_HPD_1:
WREG32(DC_HPD1_CONTROL, 0);
rdev->irq.hpd[0] = false;
break;
case RADEON_HPD_2:
WREG32(DC_HPD2_CONTROL, 0);
rdev->irq.hpd[1] = false;
break;
case RADEON_HPD_3:
WREG32(DC_HPD3_CONTROL, 0);
rdev->irq.hpd[2] = false;
break;
case RADEON_HPD_4:
WREG32(DC_HPD4_CONTROL, 0);
rdev->irq.hpd[3] = false;
break;
case RADEON_HPD_5:
WREG32(DC_HPD5_CONTROL, 0);
rdev->irq.hpd[4] = false;
break;
case RADEON_HPD_6:
WREG32(DC_HPD6_CONTROL, 0);
rdev->irq.hpd[5] = false;
break;
default:
break;
}
}
}
/* watermark setup */
static u32 evergreen_line_buffer_adjust(struct radeon_device *rdev,
struct radeon_crtc *radeon_crtc,
struct drm_display_mode *mode,
struct drm_display_mode *other_mode)
{
u32 tmp;
/*
* Line Buffer Setup
* There are 3 line buffers, each one shared by 2 display controllers.
* DC_LB_MEMORY_SPLIT controls how that line buffer is shared between
* the display controllers. The paritioning is done via one of four
* preset allocations specified in bits 2:0:
* first display controller
* 0 - first half of lb (3840 * 2)
* 1 - first 3/4 of lb (5760 * 2)
* 2 - whole lb (7680 * 2), other crtc must be disabled
* 3 - first 1/4 of lb (1920 * 2)
* second display controller
* 4 - second half of lb (3840 * 2)
* 5 - second 3/4 of lb (5760 * 2)
* 6 - whole lb (7680 * 2), other crtc must be disabled
* 7 - last 1/4 of lb (1920 * 2)
*/
/* this can get tricky if we have two large displays on a paired group
* of crtcs. Ideally for multiple large displays we'd assign them to
* non-linked crtcs for maximum line buffer allocation.
*/
if (radeon_crtc->base.enabled && mode) {
if (other_mode)
tmp = 0; /* 1/2 */
else
tmp = 2; /* whole */
} else
tmp = 0;
/* second controller of the pair uses second half of the lb */
if (radeon_crtc->crtc_id % 2)
tmp += 4;
WREG32(DC_LB_MEMORY_SPLIT + radeon_crtc->crtc_offset, tmp);
if (radeon_crtc->base.enabled && mode) {
switch (tmp) {
case 0:
case 4:
default:
if (ASIC_IS_DCE5(rdev))
return 4096 * 2;
else
return 3840 * 2;
case 1:
case 5:
if (ASIC_IS_DCE5(rdev))
return 6144 * 2;
else
return 5760 * 2;
case 2:
case 6:
if (ASIC_IS_DCE5(rdev))
return 8192 * 2;
else
return 7680 * 2;
case 3:
case 7:
if (ASIC_IS_DCE5(rdev))
return 2048 * 2;
else
return 1920 * 2;
}
}
/* controller not enabled, so no lb used */
return 0;
}
static u32 evergreen_get_number_of_dram_channels(struct radeon_device *rdev)
{
u32 tmp = RREG32(MC_SHARED_CHMAP);
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
case 0:
default:
return 1;
case 1:
return 2;
case 2:
return 4;
case 3:
return 8;
}
}
struct evergreen_wm_params {
u32 dram_channels; /* number of dram channels */
u32 yclk; /* bandwidth per dram data pin in kHz */
u32 sclk; /* engine clock in kHz */
u32 disp_clk; /* display clock in kHz */
u32 src_width; /* viewport width */
u32 active_time; /* active display time in ns */
u32 blank_time; /* blank time in ns */
bool interlaced; /* mode is interlaced */
fixed20_12 vsc; /* vertical scale ratio */
u32 num_heads; /* number of active crtcs */
u32 bytes_per_pixel; /* bytes per pixel display + overlay */
u32 lb_size; /* line buffer allocated to pipe */
u32 vtaps; /* vertical scaler taps */
};
static u32 evergreen_dram_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate DRAM Bandwidth and the part allocated to display. */
fixed20_12 dram_efficiency; /* 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
dram_efficiency.full = dfixed_const(7);
dram_efficiency.full = dfixed_div(dram_efficiency, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, dram_efficiency);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_dram_bandwidth_for_display(struct evergreen_wm_params *wm)
{
/* Calculate DRAM Bandwidth and the part allocated to display. */
fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */
disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_data_return_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate the display Data return Bandwidth */
fixed20_12 return_efficiency; /* 0.8 */
fixed20_12 sclk, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
sclk.full = dfixed_const(wm->sclk);
sclk.full = dfixed_div(sclk, a);
a.full = dfixed_const(10);
return_efficiency.full = dfixed_const(8);
return_efficiency.full = dfixed_div(return_efficiency, a);
a.full = dfixed_const(32);
bandwidth.full = dfixed_mul(a, sclk);
bandwidth.full = dfixed_mul(bandwidth, return_efficiency);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_dmif_request_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate the DMIF Request Bandwidth */
fixed20_12 disp_clk_request_efficiency; /* 0.8 */
fixed20_12 disp_clk, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
disp_clk.full = dfixed_const(wm->disp_clk);
disp_clk.full = dfixed_div(disp_clk, a);
a.full = dfixed_const(10);
disp_clk_request_efficiency.full = dfixed_const(8);
disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a);
a.full = dfixed_const(32);
bandwidth.full = dfixed_mul(a, disp_clk);
bandwidth.full = dfixed_mul(bandwidth, disp_clk_request_efficiency);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_available_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate the Available bandwidth. Display can use this temporarily but not in average. */
u32 dram_bandwidth = evergreen_dram_bandwidth(wm);
u32 data_return_bandwidth = evergreen_data_return_bandwidth(wm);
u32 dmif_req_bandwidth = evergreen_dmif_request_bandwidth(wm);
return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth));
}
static u32 evergreen_average_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate the display mode Average Bandwidth
* DisplayMode should contain the source and destination dimensions,
* timing, etc.
*/
fixed20_12 bpp;
fixed20_12 line_time;
fixed20_12 src_width;
fixed20_12 bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
line_time.full = dfixed_const(wm->active_time + wm->blank_time);
line_time.full = dfixed_div(line_time, a);
bpp.full = dfixed_const(wm->bytes_per_pixel);
src_width.full = dfixed_const(wm->src_width);
bandwidth.full = dfixed_mul(src_width, bpp);
bandwidth.full = dfixed_mul(bandwidth, wm->vsc);
bandwidth.full = dfixed_div(bandwidth, line_time);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_latency_watermark(struct evergreen_wm_params *wm)
{
/* First calcualte the latency in ns */
u32 mc_latency = 2000; /* 2000 ns. */
u32 available_bandwidth = evergreen_available_bandwidth(wm);
u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth;
u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth;
u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */
u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) +
(wm->num_heads * cursor_line_pair_return_time);
u32 latency = mc_latency + other_heads_data_return_time + dc_latency;
u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time;
fixed20_12 a, b, c;
if (wm->num_heads == 0)
return 0;
a.full = dfixed_const(2);
b.full = dfixed_const(1);
if ((wm->vsc.full > a.full) ||
((wm->vsc.full > b.full) && (wm->vtaps >= 3)) ||
(wm->vtaps >= 5) ||
((wm->vsc.full >= a.full) && wm->interlaced))
max_src_lines_per_dst_line = 4;
else
max_src_lines_per_dst_line = 2;
a.full = dfixed_const(available_bandwidth);
b.full = dfixed_const(wm->num_heads);
a.full = dfixed_div(a, b);
b.full = dfixed_const(1000);
c.full = dfixed_const(wm->disp_clk);
b.full = dfixed_div(c, b);
c.full = dfixed_const(wm->bytes_per_pixel);
b.full = dfixed_mul(b, c);
lb_fill_bw = min(dfixed_trunc(a), dfixed_trunc(b));
a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel);
b.full = dfixed_const(1000);
c.full = dfixed_const(lb_fill_bw);
b.full = dfixed_div(c, b);
a.full = dfixed_div(a, b);
line_fill_time = dfixed_trunc(a);
if (line_fill_time < wm->active_time)
return latency;
else
return latency + (line_fill_time - wm->active_time);
}
static bool evergreen_average_bandwidth_vs_dram_bandwidth_for_display(struct evergreen_wm_params *wm)
{
if (evergreen_average_bandwidth(wm) <=
(evergreen_dram_bandwidth_for_display(wm) / wm->num_heads))
return true;
else
return false;
};
static bool evergreen_average_bandwidth_vs_available_bandwidth(struct evergreen_wm_params *wm)
{
if (evergreen_average_bandwidth(wm) <=
(evergreen_available_bandwidth(wm) / wm->num_heads))
return true;
else
return false;
};
static bool evergreen_check_latency_hiding(struct evergreen_wm_params *wm)
{
u32 lb_partitions = wm->lb_size / wm->src_width;
u32 line_time = wm->active_time + wm->blank_time;
u32 latency_tolerant_lines;
u32 latency_hiding;
fixed20_12 a;
a.full = dfixed_const(1);
if (wm->vsc.full > a.full)
latency_tolerant_lines = 1;
else {
if (lb_partitions <= (wm->vtaps + 1))
latency_tolerant_lines = 1;
else
latency_tolerant_lines = 2;
}
latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time);
if (evergreen_latency_watermark(wm) <= latency_hiding)
return true;
else
return false;
}
static void evergreen_program_watermarks(struct radeon_device *rdev,
struct radeon_crtc *radeon_crtc,
u32 lb_size, u32 num_heads)
{
struct drm_display_mode *mode = &radeon_crtc->base.mode;
struct evergreen_wm_params wm;
u32 pixel_period;
u32 line_time = 0;
u32 latency_watermark_a = 0, latency_watermark_b = 0;
u32 priority_a_mark = 0, priority_b_mark = 0;
u32 priority_a_cnt = PRIORITY_OFF;
u32 priority_b_cnt = PRIORITY_OFF;
u32 pipe_offset = radeon_crtc->crtc_id * 16;
u32 tmp, arb_control3;
fixed20_12 a, b, c;
if (radeon_crtc->base.enabled && num_heads && mode) {
pixel_period = 1000000 / (u32)mode->clock;
line_time = min((u32)mode->crtc_htotal * pixel_period, (u32)65535);
priority_a_cnt = 0;
priority_b_cnt = 0;
wm.yclk = rdev->pm.current_mclk * 10;
wm.sclk = rdev->pm.current_sclk * 10;
wm.disp_clk = mode->clock;
wm.src_width = mode->crtc_hdisplay;
wm.active_time = mode->crtc_hdisplay * pixel_period;
wm.blank_time = line_time - wm.active_time;
wm.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm.interlaced = true;
wm.vsc = radeon_crtc->vsc;
wm.vtaps = 1;
if (radeon_crtc->rmx_type != RMX_OFF)
wm.vtaps = 2;
wm.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm.lb_size = lb_size;
wm.dram_channels = evergreen_get_number_of_dram_channels(rdev);
wm.num_heads = num_heads;
/* set for high clocks */
latency_watermark_a = min(evergreen_latency_watermark(&wm), (u32)65535);
/* set for low clocks */
/* wm.yclk = low clk; wm.sclk = low clk */
latency_watermark_b = min(evergreen_latency_watermark(&wm), (u32)65535);
/* possibly force display priority to high */
/* should really do this at mode validation time... */
if (!evergreen_average_bandwidth_vs_dram_bandwidth_for_display(&wm) ||
!evergreen_average_bandwidth_vs_available_bandwidth(&wm) ||
!evergreen_check_latency_hiding(&wm) ||
(rdev->disp_priority == 2)) {
DRM_INFO("force priority to high\n");
priority_a_cnt |= PRIORITY_ALWAYS_ON;
priority_b_cnt |= PRIORITY_ALWAYS_ON;
}
a.full = dfixed_const(1000);
b.full = dfixed_const(mode->clock);
b.full = dfixed_div(b, a);
c.full = dfixed_const(latency_watermark_a);
c.full = dfixed_mul(c, b);
c.full = dfixed_mul(c, radeon_crtc->hsc);
c.full = dfixed_div(c, a);
a.full = dfixed_const(16);
c.full = dfixed_div(c, a);
priority_a_mark = dfixed_trunc(c);
priority_a_cnt |= priority_a_mark & PRIORITY_MARK_MASK;
a.full = dfixed_const(1000);
b.full = dfixed_const(mode->clock);
b.full = dfixed_div(b, a);
c.full = dfixed_const(latency_watermark_b);
c.full = dfixed_mul(c, b);
c.full = dfixed_mul(c, radeon_crtc->hsc);
c.full = dfixed_div(c, a);
a.full = dfixed_const(16);
c.full = dfixed_div(c, a);
priority_b_mark = dfixed_trunc(c);
priority_b_cnt |= priority_b_mark & PRIORITY_MARK_MASK;
}
/* select wm A */
arb_control3 = RREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset);
tmp = arb_control3;
tmp &= ~LATENCY_WATERMARK_MASK(3);
tmp |= LATENCY_WATERMARK_MASK(1);
WREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset, tmp);
WREG32(PIPE0_LATENCY_CONTROL + pipe_offset,
(LATENCY_LOW_WATERMARK(latency_watermark_a) |
LATENCY_HIGH_WATERMARK(line_time)));
/* select wm B */
tmp = RREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset);
tmp &= ~LATENCY_WATERMARK_MASK(3);
tmp |= LATENCY_WATERMARK_MASK(2);
WREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset, tmp);
WREG32(PIPE0_LATENCY_CONTROL + pipe_offset,
(LATENCY_LOW_WATERMARK(latency_watermark_b) |
LATENCY_HIGH_WATERMARK(line_time)));
/* restore original selection */
WREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset, arb_control3);
/* write the priority marks */
WREG32(PRIORITY_A_CNT + radeon_crtc->crtc_offset, priority_a_cnt);
WREG32(PRIORITY_B_CNT + radeon_crtc->crtc_offset, priority_b_cnt);
}
void evergreen_bandwidth_update(struct radeon_device *rdev)
{
struct drm_display_mode *mode0 = NULL;
struct drm_display_mode *mode1 = NULL;
u32 num_heads = 0, lb_size;
int i;
radeon_update_display_priority(rdev);
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->mode_info.crtcs[i]->base.enabled)
num_heads++;
}
for (i = 0; i < rdev->num_crtc; i += 2) {
mode0 = &rdev->mode_info.crtcs[i]->base.mode;
mode1 = &rdev->mode_info.crtcs[i+1]->base.mode;
lb_size = evergreen_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode0, mode1);
evergreen_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads);
lb_size = evergreen_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i+1], mode1, mode0);
evergreen_program_watermarks(rdev, rdev->mode_info.crtcs[i+1], lb_size, num_heads);
}
}
int evergreen_mc_wait_for_idle(struct radeon_device *rdev)
{
unsigned i;
u32 tmp;
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(SRBM_STATUS) & 0x1F00;
if (!tmp)
return 0;
udelay(1);
}
return -1;
}
/*
* GART
*/
void evergreen_pcie_gart_tlb_flush(struct radeon_device *rdev)
{
unsigned i;
u32 tmp;
WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1);
WREG32(VM_CONTEXT0_REQUEST_RESPONSE, REQUEST_TYPE(1));
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(VM_CONTEXT0_REQUEST_RESPONSE);
tmp = (tmp & RESPONSE_TYPE_MASK) >> RESPONSE_TYPE_SHIFT;
if (tmp == 2) {
printk(KERN_WARNING "[drm] r600 flush TLB failed\n");
return;
}
if (tmp) {
return;
}
udelay(1);
}
}
int evergreen_pcie_gart_enable(struct radeon_device *rdev)
{
u32 tmp;
int r;
if (rdev->gart.table.vram.robj == NULL) {
dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
return -EINVAL;
}
r = radeon_gart_table_vram_pin(rdev);
if (r)
return r;
radeon_gart_restore(rdev);
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING |
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, BANK_SELECT(0) | CACHE_UPDATE_MODE(2));
/* Setup TLB control */
tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING |
SYSTEM_ACCESS_MODE_NOT_IN_SYS |
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU |
EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5);
if (rdev->flags & RADEON_IS_IGP) {
WREG32(FUS_MC_VM_MD_L1_TLB0_CNTL, tmp);
WREG32(FUS_MC_VM_MD_L1_TLB1_CNTL, tmp);
WREG32(FUS_MC_VM_MD_L1_TLB2_CNTL, tmp);
} else {
WREG32(MC_VM_MD_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB2_CNTL, tmp);
}
WREG32(MC_VM_MB_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB3_CNTL, tmp);
WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
WREG32(VM_CONTEXT0_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT);
WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
(u32)(rdev->dummy_page.addr >> 12));
WREG32(VM_CONTEXT1_CNTL, 0);
evergreen_pcie_gart_tlb_flush(rdev);
rdev->gart.ready = true;
return 0;
}
void evergreen_pcie_gart_disable(struct radeon_device *rdev)
{
u32 tmp;
int r;
/* Disable all tables */
WREG32(VM_CONTEXT0_CNTL, 0);
WREG32(VM_CONTEXT1_CNTL, 0);
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING |
EFFECTIVE_L2_QUEUE_SIZE(7));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, BANK_SELECT(0) | CACHE_UPDATE_MODE(2));
/* Setup TLB control */
tmp = EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5);
WREG32(MC_VM_MD_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB3_CNTL, tmp);
if (rdev->gart.table.vram.robj) {
r = radeon_bo_reserve(rdev->gart.table.vram.robj, false);
if (likely(r == 0)) {
radeon_bo_kunmap(rdev->gart.table.vram.robj);
radeon_bo_unpin(rdev->gart.table.vram.robj);
radeon_bo_unreserve(rdev->gart.table.vram.robj);
}
}
}
void evergreen_pcie_gart_fini(struct radeon_device *rdev)
{
evergreen_pcie_gart_disable(rdev);
radeon_gart_table_vram_free(rdev);
radeon_gart_fini(rdev);
}
void evergreen_agp_enable(struct radeon_device *rdev)
{
u32 tmp;
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING |
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, BANK_SELECT(0) | CACHE_UPDATE_MODE(2));
/* Setup TLB control */
tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING |
SYSTEM_ACCESS_MODE_NOT_IN_SYS |
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU |
EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5);
WREG32(MC_VM_MD_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB3_CNTL, tmp);
WREG32(VM_CONTEXT0_CNTL, 0);
WREG32(VM_CONTEXT1_CNTL, 0);
}
void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save)
{
save->vga_control[0] = RREG32(D1VGA_CONTROL);
save->vga_control[1] = RREG32(D2VGA_CONTROL);
save->vga_render_control = RREG32(VGA_RENDER_CONTROL);
save->vga_hdp_control = RREG32(VGA_HDP_CONTROL);
save->crtc_control[0] = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET);
save->crtc_control[1] = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET);
if (rdev->num_crtc >= 4) {
save->vga_control[2] = RREG32(EVERGREEN_D3VGA_CONTROL);
save->vga_control[3] = RREG32(EVERGREEN_D4VGA_CONTROL);
save->crtc_control[2] = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET);
save->crtc_control[3] = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET);
}
if (rdev->num_crtc >= 6) {
save->vga_control[4] = RREG32(EVERGREEN_D5VGA_CONTROL);
save->vga_control[5] = RREG32(EVERGREEN_D6VGA_CONTROL);
save->crtc_control[4] = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET);
save->crtc_control[5] = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET);
}
/* Stop all video */
WREG32(VGA_RENDER_CONTROL, 0);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC0_REGISTER_OFFSET, 1);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC1_REGISTER_OFFSET, 1);
if (rdev->num_crtc >= 4) {
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC2_REGISTER_OFFSET, 1);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC3_REGISTER_OFFSET, 1);
}
if (rdev->num_crtc >= 6) {
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC4_REGISTER_OFFSET, 1);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC5_REGISTER_OFFSET, 1);
}
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET, 0);
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET, 0);
if (rdev->num_crtc >= 4) {
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET, 0);
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET, 0);
}
if (rdev->num_crtc >= 6) {
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET, 0);
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET, 0);
}
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0);
if (rdev->num_crtc >= 4) {
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0);
}
if (rdev->num_crtc >= 6) {
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0);
}
WREG32(D1VGA_CONTROL, 0);
WREG32(D2VGA_CONTROL, 0);
if (rdev->num_crtc >= 4) {
WREG32(EVERGREEN_D3VGA_CONTROL, 0);
WREG32(EVERGREEN_D4VGA_CONTROL, 0);
}
if (rdev->num_crtc >= 6) {
WREG32(EVERGREEN_D5VGA_CONTROL, 0);
WREG32(EVERGREEN_D6VGA_CONTROL, 0);
}
}
void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save)
{
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC0_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC0_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + EVERGREEN_CRTC0_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + EVERGREEN_CRTC0_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC1_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC1_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + EVERGREEN_CRTC1_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + EVERGREEN_CRTC1_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
if (rdev->num_crtc >= 4) {
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC2_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC2_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + EVERGREEN_CRTC2_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + EVERGREEN_CRTC2_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC3_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC3_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + EVERGREEN_CRTC3_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + EVERGREEN_CRTC3_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
}
if (rdev->num_crtc >= 6) {
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC4_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC4_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + EVERGREEN_CRTC4_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + EVERGREEN_CRTC4_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC5_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + EVERGREEN_CRTC5_REGISTER_OFFSET,
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + EVERGREEN_CRTC5_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + EVERGREEN_CRTC5_REGISTER_OFFSET,
(u32)rdev->mc.vram_start);
}
WREG32(EVERGREEN_VGA_MEMORY_BASE_ADDRESS_HIGH, upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_VGA_MEMORY_BASE_ADDRESS, (u32)rdev->mc.vram_start);
/* Unlock host access */
WREG32(VGA_HDP_CONTROL, save->vga_hdp_control);
mdelay(1);
/* Restore video state */
WREG32(D1VGA_CONTROL, save->vga_control[0]);
WREG32(D2VGA_CONTROL, save->vga_control[1]);
if (rdev->num_crtc >= 4) {
WREG32(EVERGREEN_D3VGA_CONTROL, save->vga_control[2]);
WREG32(EVERGREEN_D4VGA_CONTROL, save->vga_control[3]);
}
if (rdev->num_crtc >= 6) {
WREG32(EVERGREEN_D5VGA_CONTROL, save->vga_control[4]);
WREG32(EVERGREEN_D6VGA_CONTROL, save->vga_control[5]);
}
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC0_REGISTER_OFFSET, 1);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC1_REGISTER_OFFSET, 1);
if (rdev->num_crtc >= 4) {
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC2_REGISTER_OFFSET, 1);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC3_REGISTER_OFFSET, 1);
}
if (rdev->num_crtc >= 6) {
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC4_REGISTER_OFFSET, 1);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC5_REGISTER_OFFSET, 1);
}
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET, save->crtc_control[0]);
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET, save->crtc_control[1]);
if (rdev->num_crtc >= 4) {
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET, save->crtc_control[2]);
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET, save->crtc_control[3]);
}
if (rdev->num_crtc >= 6) {
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET, save->crtc_control[4]);
WREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET, save->crtc_control[5]);
}
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0);
if (rdev->num_crtc >= 4) {
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0);
}
if (rdev->num_crtc >= 6) {
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0);
}
WREG32(VGA_RENDER_CONTROL, save->vga_render_control);
}
void evergreen_mc_program(struct radeon_device *rdev)
{
struct evergreen_mc_save save;
u32 tmp;
int i, j;
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);
evergreen_mc_stop(rdev, &save);
if (evergreen_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
/* Lockout access through VGA aperture*/
WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
/* Update configuration */
if (rdev->flags & RADEON_IS_AGP) {
if (rdev->mc.vram_start < rdev->mc.gtt_start) {
/* VRAM before AGP */
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.vram_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.gtt_end >> 12);
} else {
/* VRAM after AGP */
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.gtt_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.vram_end >> 12);
}
} else {
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.vram_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.vram_end >> 12);
}
WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, 0);
if (rdev->flags & RADEON_IS_IGP) {
tmp = RREG32(MC_FUS_VM_FB_OFFSET) & 0x000FFFFF;
tmp |= ((rdev->mc.vram_end >> 20) & 0xF) << 24;
tmp |= ((rdev->mc.vram_start >> 20) & 0xF) << 20;
WREG32(MC_FUS_VM_FB_OFFSET, tmp);
}
tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
WREG32(MC_VM_FB_LOCATION, tmp);
WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF);
if (rdev->flags & RADEON_IS_AGP) {
WREG32(MC_VM_AGP_TOP, rdev->mc.gtt_end >> 16);
WREG32(MC_VM_AGP_BOT, rdev->mc.gtt_start >> 16);
WREG32(MC_VM_AGP_BASE, rdev->mc.agp_base >> 22);
} else {
WREG32(MC_VM_AGP_BASE, 0);
WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
}
if (evergreen_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
evergreen_mc_resume(rdev, &save);
/* we need to own VRAM, so turn off the VGA renderer here
* to stop it overwriting our objects */
rv515_vga_render_disable(rdev);
}
/*
* CP.
*/
void evergreen_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
{
/* set to DX10/11 mode */
radeon_ring_write(rdev, PACKET3(PACKET3_MODE_CONTROL, 0));
radeon_ring_write(rdev, 1);
/* FIXME: implement */
radeon_ring_write(rdev, PACKET3(PACKET3_INDIRECT_BUFFER, 2));
radeon_ring_write(rdev,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
(ib->gpu_addr & 0xFFFFFFFC));
radeon_ring_write(rdev, upper_32_bits(ib->gpu_addr) & 0xFF);
radeon_ring_write(rdev, ib->length_dw);
}
static int evergreen_cp_load_microcode(struct radeon_device *rdev)
{
const __be32 *fw_data;
int i;
if (!rdev->me_fw || !rdev->pfp_fw)
return -EINVAL;
r700_cp_stop(rdev);
WREG32(CP_RB_CNTL,
#ifdef __BIG_ENDIAN
BUF_SWAP_32BIT |
#endif
RB_NO_UPDATE | RB_BLKSZ(15) | RB_BUFSZ(3));
fw_data = (const __be32 *)rdev->pfp_fw->data;
WREG32(CP_PFP_UCODE_ADDR, 0);
for (i = 0; i < EVERGREEN_PFP_UCODE_SIZE; i++)
WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++));
WREG32(CP_PFP_UCODE_ADDR, 0);
fw_data = (const __be32 *)rdev->me_fw->data;
WREG32(CP_ME_RAM_WADDR, 0);
for (i = 0; i < EVERGREEN_PM4_UCODE_SIZE; i++)
WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++));
WREG32(CP_PFP_UCODE_ADDR, 0);
WREG32(CP_ME_RAM_WADDR, 0);
WREG32(CP_ME_RAM_RADDR, 0);
return 0;
}
static int evergreen_cp_start(struct radeon_device *rdev)
{
int r, i;
uint32_t cp_me;
r = radeon_ring_lock(rdev, 7);
if (r) {
DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
return r;
}
radeon_ring_write(rdev, PACKET3(PACKET3_ME_INITIALIZE, 5));
radeon_ring_write(rdev, 0x1);
radeon_ring_write(rdev, 0x0);
radeon_ring_write(rdev, rdev->config.evergreen.max_hw_contexts - 1);
radeon_ring_write(rdev, PACKET3_ME_INITIALIZE_DEVICE_ID(1));
radeon_ring_write(rdev, 0);
radeon_ring_write(rdev, 0);
radeon_ring_unlock_commit(rdev);
cp_me = 0xff;
WREG32(CP_ME_CNTL, cp_me);
r = radeon_ring_lock(rdev, evergreen_default_size + 19);
if (r) {
DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
return r;
}
/* setup clear context state */
radeon_ring_write(rdev, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
radeon_ring_write(rdev, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
for (i = 0; i < evergreen_default_size; i++)
radeon_ring_write(rdev, evergreen_default_state[i]);
radeon_ring_write(rdev, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
radeon_ring_write(rdev, PACKET3_PREAMBLE_END_CLEAR_STATE);
/* set clear context state */
radeon_ring_write(rdev, PACKET3(PACKET3_CLEAR_STATE, 0));
radeon_ring_write(rdev, 0);
/* SQ_VTX_BASE_VTX_LOC */
radeon_ring_write(rdev, 0xc0026f00);
radeon_ring_write(rdev, 0x00000000);
radeon_ring_write(rdev, 0x00000000);
radeon_ring_write(rdev, 0x00000000);
/* Clear consts */
radeon_ring_write(rdev, 0xc0036f00);
radeon_ring_write(rdev, 0x00000bc4);
radeon_ring_write(rdev, 0xffffffff);
radeon_ring_write(rdev, 0xffffffff);
radeon_ring_write(rdev, 0xffffffff);
radeon_ring_write(rdev, 0xc0026900);
radeon_ring_write(rdev, 0x00000316);
radeon_ring_write(rdev, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */
radeon_ring_write(rdev, 0x00000010); /* */
radeon_ring_unlock_commit(rdev);
return 0;
}
int evergreen_cp_resume(struct radeon_device *rdev)
{
u32 tmp;
u32 rb_bufsz;
int r;
/* Reset cp; if cp is reset, then PA, SH, VGT also need to be reset */
WREG32(GRBM_SOFT_RESET, (SOFT_RESET_CP |
SOFT_RESET_PA |
SOFT_RESET_SH |
SOFT_RESET_VGT |
SOFT_RESET_SX));
RREG32(GRBM_SOFT_RESET);
mdelay(15);
WREG32(GRBM_SOFT_RESET, 0);
RREG32(GRBM_SOFT_RESET);
/* Set ring buffer size */
rb_bufsz = drm_order(rdev->cp.ring_size / 8);
tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
tmp |= BUF_SWAP_32BIT;
#endif
WREG32(CP_RB_CNTL, tmp);
WREG32(CP_SEM_WAIT_TIMER, 0x4);
/* Set the write pointer delay */
WREG32(CP_RB_WPTR_DELAY, 0);
/* Initialize the ring buffer's read and write pointers */
WREG32(CP_RB_CNTL, tmp | RB_RPTR_WR_ENA);
WREG32(CP_RB_RPTR_WR, 0);
WREG32(CP_RB_WPTR, 0);
/* set the wb address wether it's enabled or not */
WREG32(CP_RB_RPTR_ADDR,
((rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC));
WREG32(CP_RB_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF);
WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF);
if (rdev->wb.enabled)
WREG32(SCRATCH_UMSK, 0xff);
else {
tmp |= RB_NO_UPDATE;
WREG32(SCRATCH_UMSK, 0);
}
mdelay(1);
WREG32(CP_RB_CNTL, tmp);
WREG32(CP_RB_BASE, rdev->cp.gpu_addr >> 8);
WREG32(CP_DEBUG, (1 << 27) | (1 << 28));
rdev->cp.rptr = RREG32(CP_RB_RPTR);
rdev->cp.wptr = RREG32(CP_RB_WPTR);
evergreen_cp_start(rdev);
rdev->cp.ready = true;
r = radeon_ring_test(rdev);
if (r) {
rdev->cp.ready = false;
return r;
}
return 0;
}
/*
* Core functions
*/
static u32 evergreen_get_tile_pipe_to_backend_map(struct radeon_device *rdev,
u32 num_tile_pipes,
u32 num_backends,
u32 backend_disable_mask)
{
u32 backend_map = 0;
u32 enabled_backends_mask = 0;
u32 enabled_backends_count = 0;
u32 cur_pipe;
u32 swizzle_pipe[EVERGREEN_MAX_PIPES];
u32 cur_backend = 0;
u32 i;
bool force_no_swizzle;
if (num_tile_pipes > EVERGREEN_MAX_PIPES)
num_tile_pipes = EVERGREEN_MAX_PIPES;
if (num_tile_pipes < 1)
num_tile_pipes = 1;
if (num_backends > EVERGREEN_MAX_BACKENDS)
num_backends = EVERGREEN_MAX_BACKENDS;
if (num_backends < 1)
num_backends = 1;
for (i = 0; i < EVERGREEN_MAX_BACKENDS; ++i) {
if (((backend_disable_mask >> i) & 1) == 0) {
enabled_backends_mask |= (1 << i);
++enabled_backends_count;
}
if (enabled_backends_count == num_backends)
break;
}
if (enabled_backends_count == 0) {
enabled_backends_mask = 1;
enabled_backends_count = 1;
}
if (enabled_backends_count != num_backends)
num_backends = enabled_backends_count;
memset((uint8_t *)&swizzle_pipe[0], 0, sizeof(u32) * EVERGREEN_MAX_PIPES);
switch (rdev->family) {
case CHIP_CEDAR:
case CHIP_REDWOOD:
case CHIP_PALM:
case CHIP_SUMO:
case CHIP_SUMO2:
case CHIP_TURKS:
case CHIP_CAICOS:
force_no_swizzle = false;
break;
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
case CHIP_JUNIPER:
case CHIP_BARTS:
default:
force_no_swizzle = true;
break;
}
if (force_no_swizzle) {
bool last_backend_enabled = false;
force_no_swizzle = false;
for (i = 0; i < EVERGREEN_MAX_BACKENDS; ++i) {
if (((enabled_backends_mask >> i) & 1) == 1) {
if (last_backend_enabled)
force_no_swizzle = true;
last_backend_enabled = true;
} else
last_backend_enabled = false;
}
}
switch (num_tile_pipes) {
case 1:
case 3:
case 5:
case 7:
DRM_ERROR("odd number of pipes!\n");
break;
case 2:
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 1;
break;
case 4:
if (force_no_swizzle) {
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 1;
swizzle_pipe[2] = 2;
swizzle_pipe[3] = 3;
} else {
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 2;
swizzle_pipe[2] = 1;
swizzle_pipe[3] = 3;
}
break;
case 6:
if (force_no_swizzle) {
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 1;
swizzle_pipe[2] = 2;
swizzle_pipe[3] = 3;
swizzle_pipe[4] = 4;
swizzle_pipe[5] = 5;
} else {
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 2;
swizzle_pipe[2] = 4;
swizzle_pipe[3] = 1;
swizzle_pipe[4] = 3;
swizzle_pipe[5] = 5;
}
break;
case 8:
if (force_no_swizzle) {
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 1;
swizzle_pipe[2] = 2;
swizzle_pipe[3] = 3;
swizzle_pipe[4] = 4;
swizzle_pipe[5] = 5;
swizzle_pipe[6] = 6;
swizzle_pipe[7] = 7;
} else {
swizzle_pipe[0] = 0;
swizzle_pipe[1] = 2;
swizzle_pipe[2] = 4;
swizzle_pipe[3] = 6;
swizzle_pipe[4] = 1;
swizzle_pipe[5] = 3;
swizzle_pipe[6] = 5;
swizzle_pipe[7] = 7;
}
break;
}
for (cur_pipe = 0; cur_pipe < num_tile_pipes; ++cur_pipe) {
while (((1 << cur_backend) & enabled_backends_mask) == 0)
cur_backend = (cur_backend + 1) % EVERGREEN_MAX_BACKENDS;
backend_map |= (((cur_backend & 0xf) << (swizzle_pipe[cur_pipe] * 4)));
cur_backend = (cur_backend + 1) % EVERGREEN_MAX_BACKENDS;
}
return backend_map;
}
static void evergreen_program_channel_remap(struct radeon_device *rdev)
{
u32 tcp_chan_steer_lo, tcp_chan_steer_hi, mc_shared_chremap, tmp;
tmp = RREG32(MC_SHARED_CHMAP);
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
case 0:
case 1:
case 2:
case 3:
default:
/* default mapping */
mc_shared_chremap = 0x00fac688;
break;
}
switch (rdev->family) {
case CHIP_HEMLOCK:
case CHIP_CYPRESS:
case CHIP_BARTS:
tcp_chan_steer_lo = 0x54763210;
tcp_chan_steer_hi = 0x0000ba98;
break;
case CHIP_JUNIPER:
case CHIP_REDWOOD:
case CHIP_CEDAR:
case CHIP_PALM:
case CHIP_SUMO:
case CHIP_SUMO2:
case CHIP_TURKS:
case CHIP_CAICOS:
default:
tcp_chan_steer_lo = 0x76543210;
tcp_chan_steer_hi = 0x0000ba98;
break;
}
WREG32(TCP_CHAN_STEER_LO, tcp_chan_steer_lo);
WREG32(TCP_CHAN_STEER_HI, tcp_chan_steer_hi);
WREG32(MC_SHARED_CHREMAP, mc_shared_chremap);
}
static void evergreen_gpu_init(struct radeon_device *rdev)
{
u32 cc_rb_backend_disable = 0;
u32 cc_gc_shader_pipe_config;
u32 gb_addr_config = 0;
u32 mc_shared_chmap, mc_arb_ramcfg;
u32 gb_backend_map;
u32 grbm_gfx_index;
u32 sx_debug_1;
u32 smx_dc_ctl0;
u32 sq_config;
u32 sq_lds_resource_mgmt;
u32 sq_gpr_resource_mgmt_1;
u32 sq_gpr_resource_mgmt_2;
u32 sq_gpr_resource_mgmt_3;
u32 sq_thread_resource_mgmt;
u32 sq_thread_resource_mgmt_2;
u32 sq_stack_resource_mgmt_1;
u32 sq_stack_resource_mgmt_2;
u32 sq_stack_resource_mgmt_3;
u32 vgt_cache_invalidation;
u32 hdp_host_path_cntl, tmp;
int i, j, num_shader_engines, ps_thread_count;
switch (rdev->family) {
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
rdev->config.evergreen.num_ses = 2;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 8;
rdev->config.evergreen.max_simds = 10;
rdev->config.evergreen.max_backends = 4 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 512;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
case CHIP_JUNIPER:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 4;
rdev->config.evergreen.max_simds = 10;
rdev->config.evergreen.max_backends = 4 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 512;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
case CHIP_REDWOOD:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 4;
rdev->config.evergreen.max_simds = 5;
rdev->config.evergreen.max_backends = 2 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
case CHIP_CEDAR:
default:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 2;
rdev->config.evergreen.max_tile_pipes = 2;
rdev->config.evergreen.max_simds = 2;
rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 192;
rdev->config.evergreen.max_gs_threads = 16;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 128;
rdev->config.evergreen.sx_max_export_pos_size = 32;
rdev->config.evergreen.sx_max_export_smx_size = 96;
rdev->config.evergreen.max_hw_contexts = 4;
rdev->config.evergreen.sq_num_cf_insts = 1;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
case CHIP_PALM:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 2;
rdev->config.evergreen.max_tile_pipes = 2;
rdev->config.evergreen.max_simds = 2;
rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 192;
rdev->config.evergreen.max_gs_threads = 16;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 128;
rdev->config.evergreen.sx_max_export_pos_size = 32;
rdev->config.evergreen.sx_max_export_smx_size = 96;
rdev->config.evergreen.max_hw_contexts = 4;
rdev->config.evergreen.sq_num_cf_insts = 1;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
case CHIP_SUMO:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 2;
if (rdev->pdev->device == 0x9648)
rdev->config.evergreen.max_simds = 3;
else if ((rdev->pdev->device == 0x9647) ||
(rdev->pdev->device == 0x964a))
rdev->config.evergreen.max_simds = 4;
else
rdev->config.evergreen.max_simds = 5;
rdev->config.evergreen.max_backends = 2 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
case CHIP_SUMO2:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 4;
rdev->config.evergreen.max_simds = 2;
rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 512;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
case CHIP_BARTS:
rdev->config.evergreen.num_ses = 2;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 8;
rdev->config.evergreen.max_simds = 7;
rdev->config.evergreen.max_backends = 4 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 512;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
case CHIP_TURKS:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 4;
rdev->config.evergreen.max_simds = 6;
rdev->config.evergreen.max_backends = 2 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
case CHIP_CAICOS:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 2;
rdev->config.evergreen.max_simds = 2;
rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 192;
rdev->config.evergreen.max_gs_threads = 16;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 128;
rdev->config.evergreen.sx_max_export_pos_size = 32;
rdev->config.evergreen.sx_max_export_smx_size = 96;
rdev->config.evergreen.max_hw_contexts = 4;
rdev->config.evergreen.sq_num_cf_insts = 1;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
break;
}
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));
cc_gc_shader_pipe_config = RREG32(CC_GC_SHADER_PIPE_CONFIG) & ~2;
cc_gc_shader_pipe_config |=
INACTIVE_QD_PIPES((EVERGREEN_MAX_PIPES_MASK << rdev->config.evergreen.max_pipes)
& EVERGREEN_MAX_PIPES_MASK);
cc_gc_shader_pipe_config |=
INACTIVE_SIMDS((EVERGREEN_MAX_SIMDS_MASK << rdev->config.evergreen.max_simds)
& EVERGREEN_MAX_SIMDS_MASK);
cc_rb_backend_disable =
BACKEND_DISABLE((EVERGREEN_MAX_BACKENDS_MASK << rdev->config.evergreen.max_backends)
& EVERGREEN_MAX_BACKENDS_MASK);
mc_shared_chmap = RREG32(MC_SHARED_CHMAP);
if (rdev->flags & RADEON_IS_IGP)
mc_arb_ramcfg = RREG32(FUS_MC_ARB_RAMCFG);
else
mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG);
switch (rdev->config.evergreen.max_tile_pipes) {
case 1:
default:
gb_addr_config |= NUM_PIPES(0);
break;
case 2:
gb_addr_config |= NUM_PIPES(1);
break;
case 4:
gb_addr_config |= NUM_PIPES(2);
break;
case 8:
gb_addr_config |= NUM_PIPES(3);
break;
}
gb_addr_config |= PIPE_INTERLEAVE_SIZE((mc_arb_ramcfg & BURSTLENGTH_MASK) >> BURSTLENGTH_SHIFT);
gb_addr_config |= BANK_INTERLEAVE_SIZE(0);
gb_addr_config |= NUM_SHADER_ENGINES(rdev->config.evergreen.num_ses - 1);
gb_addr_config |= SHADER_ENGINE_TILE_SIZE(1);
gb_addr_config |= NUM_GPUS(0); /* Hemlock? */
gb_addr_config |= MULTI_GPU_TILE_SIZE(2);
if (((mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT) > 2)
gb_addr_config |= ROW_SIZE(2);
else
gb_addr_config |= ROW_SIZE((mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT);
if (rdev->ddev->pdev->device == 0x689e) {
u32 efuse_straps_4;
u32 efuse_straps_3;
u8 efuse_box_bit_131_124;
WREG32(RCU_IND_INDEX, 0x204);
efuse_straps_4 = RREG32(RCU_IND_DATA);
WREG32(RCU_IND_INDEX, 0x203);
efuse_straps_3 = RREG32(RCU_IND_DATA);
efuse_box_bit_131_124 = (u8)(((efuse_straps_4 & 0xf) << 4) | ((efuse_straps_3 & 0xf0000000) >> 28));
switch(efuse_box_bit_131_124) {
case 0x00:
gb_backend_map = 0x76543210;
break;
case 0x55:
gb_backend_map = 0x77553311;
break;
case 0x56:
gb_backend_map = 0x77553300;
break;
case 0x59:
gb_backend_map = 0x77552211;
break;
case 0x66:
gb_backend_map = 0x77443300;
break;
case 0x99:
gb_backend_map = 0x66552211;
break;
case 0x5a:
gb_backend_map = 0x77552200;
break;
case 0xaa:
gb_backend_map = 0x66442200;
break;
case 0x95:
gb_backend_map = 0x66553311;
break;
default:
DRM_ERROR("bad backend map, using default\n");
gb_backend_map =
evergreen_get_tile_pipe_to_backend_map(rdev,
rdev->config.evergreen.max_tile_pipes,
rdev->config.evergreen.max_backends,
((EVERGREEN_MAX_BACKENDS_MASK <<
rdev->config.evergreen.max_backends) &
EVERGREEN_MAX_BACKENDS_MASK));
break;
}
} else if (rdev->ddev->pdev->device == 0x68b9) {
u32 efuse_straps_3;
u8 efuse_box_bit_127_124;
WREG32(RCU_IND_INDEX, 0x203);
efuse_straps_3 = RREG32(RCU_IND_DATA);
efuse_box_bit_127_124 = (u8)((efuse_straps_3 & 0xF0000000) >> 28);
switch(efuse_box_bit_127_124) {
case 0x0:
gb_backend_map = 0x00003210;
break;
case 0x5:
case 0x6:
case 0x9:
case 0xa:
gb_backend_map = 0x00003311;
break;
default:
DRM_ERROR("bad backend map, using default\n");
gb_backend_map =
evergreen_get_tile_pipe_to_backend_map(rdev,
rdev->config.evergreen.max_tile_pipes,
rdev->config.evergreen.max_backends,
((EVERGREEN_MAX_BACKENDS_MASK <<
rdev->config.evergreen.max_backends) &
EVERGREEN_MAX_BACKENDS_MASK));
break;
}
} else {
switch (rdev->family) {
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
case CHIP_BARTS:
gb_backend_map = 0x66442200;
break;
case CHIP_JUNIPER:
gb_backend_map = 0x00002200;
break;
default:
gb_backend_map =
evergreen_get_tile_pipe_to_backend_map(rdev,
rdev->config.evergreen.max_tile_pipes,
rdev->config.evergreen.max_backends,
((EVERGREEN_MAX_BACKENDS_MASK <<
rdev->config.evergreen.max_backends) &
EVERGREEN_MAX_BACKENDS_MASK));
}
}
/* setup tiling info dword. gb_addr_config is not adequate since it does
* not have bank info, so create a custom tiling dword.
* bits 3:0 num_pipes
* bits 7:4 num_banks
* bits 11:8 group_size
* bits 15:12 row_size
*/
rdev->config.evergreen.tile_config = 0;
switch (rdev->config.evergreen.max_tile_pipes) {
case 1:
default:
rdev->config.evergreen.tile_config |= (0 << 0);
break;
case 2:
rdev->config.evergreen.tile_config |= (1 << 0);
break;
case 4:
rdev->config.evergreen.tile_config |= (2 << 0);
break;
case 8:
rdev->config.evergreen.tile_config |= (3 << 0);
break;
}
/* num banks is 8 on all fusion asics. 0 = 4, 1 = 8, 2 = 16 */
if (rdev->flags & RADEON_IS_IGP)
rdev->config.evergreen.tile_config |= 1 << 4;
else
rdev->config.evergreen.tile_config |=
((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) << 4;
rdev->config.evergreen.tile_config |=
((mc_arb_ramcfg & BURSTLENGTH_MASK) >> BURSTLENGTH_SHIFT) << 8;
rdev->config.evergreen.tile_config |=
((gb_addr_config & 0x30000000) >> 28) << 12;
rdev->config.evergreen.backend_map = gb_backend_map;
WREG32(GB_BACKEND_MAP, gb_backend_map);
WREG32(GB_ADDR_CONFIG, gb_addr_config);
WREG32(DMIF_ADDR_CONFIG, gb_addr_config);
WREG32(HDP_ADDR_CONFIG, gb_addr_config);
evergreen_program_channel_remap(rdev);
num_shader_engines = ((RREG32(GB_ADDR_CONFIG) & NUM_SHADER_ENGINES(3)) >> 12) + 1;
grbm_gfx_index = INSTANCE_BROADCAST_WRITES;
for (i = 0; i < rdev->config.evergreen.num_ses; i++) {
u32 rb = cc_rb_backend_disable | (0xf0 << 16);
u32 sp = cc_gc_shader_pipe_config;
u32 gfx = grbm_gfx_index | SE_INDEX(i);
if (i == num_shader_engines) {
rb |= BACKEND_DISABLE(EVERGREEN_MAX_BACKENDS_MASK);
sp |= INACTIVE_SIMDS(EVERGREEN_MAX_SIMDS_MASK);
}
WREG32(GRBM_GFX_INDEX, gfx);
WREG32(RLC_GFX_INDEX, gfx);
WREG32(CC_RB_BACKEND_DISABLE, rb);
WREG32(CC_SYS_RB_BACKEND_DISABLE, rb);
WREG32(GC_USER_RB_BACKEND_DISABLE, rb);
WREG32(CC_GC_SHADER_PIPE_CONFIG, sp);
}
grbm_gfx_index |= SE_BROADCAST_WRITES;
WREG32(GRBM_GFX_INDEX, grbm_gfx_index);
WREG32(RLC_GFX_INDEX, grbm_gfx_index);
WREG32(CGTS_SYS_TCC_DISABLE, 0);
WREG32(CGTS_TCC_DISABLE, 0);
WREG32(CGTS_USER_SYS_TCC_DISABLE, 0);
WREG32(CGTS_USER_TCC_DISABLE, 0);
/* set HW defaults for 3D engine */
WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) |
ROQ_IB2_START(0x2b)));
WREG32(CP_MEQ_THRESHOLDS, STQ_SPLIT(0x30));
WREG32(TA_CNTL_AUX, (DISABLE_CUBE_ANISO |
SYNC_GRADIENT |
SYNC_WALKER |
SYNC_ALIGNER));
sx_debug_1 = RREG32(SX_DEBUG_1);
sx_debug_1 |= ENABLE_NEW_SMX_ADDRESS;
WREG32(SX_DEBUG_1, sx_debug_1);
smx_dc_ctl0 = RREG32(SMX_DC_CTL0);
smx_dc_ctl0 &= ~NUMBER_OF_SETS(0x1ff);
smx_dc_ctl0 |= NUMBER_OF_SETS(rdev->config.evergreen.sx_num_of_sets);
WREG32(SMX_DC_CTL0, smx_dc_ctl0);
WREG32(SX_EXPORT_BUFFER_SIZES, (COLOR_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_size / 4) - 1) |
POSITION_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_pos_size / 4) - 1) |
SMX_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_smx_size / 4) - 1)));
WREG32(PA_SC_FIFO_SIZE, (SC_PRIM_FIFO_SIZE(rdev->config.evergreen.sc_prim_fifo_size) |
SC_HIZ_TILE_FIFO_SIZE(rdev->config.evergreen.sc_hiz_tile_fifo_size) |
SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.evergreen.sc_earlyz_tile_fifo_size)));
WREG32(VGT_NUM_INSTANCES, 1);
WREG32(SPI_CONFIG_CNTL, 0);
WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4));
WREG32(CP_PERFMON_CNTL, 0);
WREG32(SQ_MS_FIFO_SIZES, (CACHE_FIFO_SIZE(16 * rdev->config.evergreen.sq_num_cf_insts) |
FETCH_FIFO_HIWATER(0x4) |
DONE_FIFO_HIWATER(0xe0) |
ALU_UPDATE_FIFO_HIWATER(0x8)));
sq_config = RREG32(SQ_CONFIG);
sq_config &= ~(PS_PRIO(3) |
VS_PRIO(3) |
GS_PRIO(3) |
ES_PRIO(3));
sq_config |= (VC_ENABLE |
EXPORT_SRC_C |
PS_PRIO(0) |
VS_PRIO(1) |
GS_PRIO(2) |
ES_PRIO(3));
switch (rdev->family) {
case CHIP_CEDAR:
case CHIP_PALM:
case CHIP_SUMO:
case CHIP_SUMO2:
case CHIP_CAICOS:
/* no vertex cache */
sq_config &= ~VC_ENABLE;
break;
default:
break;
}
sq_lds_resource_mgmt = RREG32(SQ_LDS_RESOURCE_MGMT);
sq_gpr_resource_mgmt_1 = NUM_PS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2))* 12 / 32);
sq_gpr_resource_mgmt_1 |= NUM_VS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 6 / 32);
sq_gpr_resource_mgmt_1 |= NUM_CLAUSE_TEMP_GPRS(4);
sq_gpr_resource_mgmt_2 = NUM_GS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 4 / 32);
sq_gpr_resource_mgmt_2 |= NUM_ES_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 4 / 32);
sq_gpr_resource_mgmt_3 = NUM_HS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 3 / 32);
sq_gpr_resource_mgmt_3 |= NUM_LS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 3 / 32);
switch (rdev->family) {
case CHIP_CEDAR:
case CHIP_PALM:
case CHIP_SUMO:
case CHIP_SUMO2:
ps_thread_count = 96;
break;
default:
ps_thread_count = 128;
break;
}
sq_thread_resource_mgmt = NUM_PS_THREADS(ps_thread_count);
sq_thread_resource_mgmt |= NUM_VS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_thread_resource_mgmt |= NUM_GS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_thread_resource_mgmt |= NUM_ES_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_thread_resource_mgmt_2 = NUM_HS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_thread_resource_mgmt_2 |= NUM_LS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_stack_resource_mgmt_1 = NUM_PS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_1 |= NUM_VS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_2 = NUM_GS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_2 |= NUM_ES_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_3 = NUM_HS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_3 |= NUM_LS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
WREG32(SQ_CONFIG, sq_config);
WREG32(SQ_GPR_RESOURCE_MGMT_1, sq_gpr_resource_mgmt_1);
WREG32(SQ_GPR_RESOURCE_MGMT_2, sq_gpr_resource_mgmt_2);
WREG32(SQ_GPR_RESOURCE_MGMT_3, sq_gpr_resource_mgmt_3);
WREG32(SQ_THREAD_RESOURCE_MGMT, sq_thread_resource_mgmt);
WREG32(SQ_THREAD_RESOURCE_MGMT_2, sq_thread_resource_mgmt_2);
WREG32(SQ_STACK_RESOURCE_MGMT_1, sq_stack_resource_mgmt_1);
WREG32(SQ_STACK_RESOURCE_MGMT_2, sq_stack_resource_mgmt_2);
WREG32(SQ_STACK_RESOURCE_MGMT_3, sq_stack_resource_mgmt_3);
WREG32(SQ_DYN_GPR_CNTL_PS_FLUSH_REQ, 0);
WREG32(SQ_LDS_RESOURCE_MGMT, sq_lds_resource_mgmt);
WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) |
FORCE_EOV_MAX_REZ_CNT(255)));
switch (rdev->family) {
case CHIP_CEDAR:
case CHIP_PALM:
case CHIP_SUMO:
case CHIP_SUMO2:
case CHIP_CAICOS:
vgt_cache_invalidation = CACHE_INVALIDATION(TC_ONLY);
break;
default:
vgt_cache_invalidation = CACHE_INVALIDATION(VC_AND_TC);
break;
}
vgt_cache_invalidation |= AUTO_INVLD_EN(ES_AND_GS_AUTO);
WREG32(VGT_CACHE_INVALIDATION, vgt_cache_invalidation);
WREG32(VGT_GS_VERTEX_REUSE, 16);
WREG32(PA_SU_LINE_STIPPLE_VALUE, 0);
WREG32(PA_SC_LINE_STIPPLE_STATE, 0);
WREG32(VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
WREG32(VGT_OUT_DEALLOC_CNTL, 16);
WREG32(CB_PERF_CTR0_SEL_0, 0);
WREG32(CB_PERF_CTR0_SEL_1, 0);
WREG32(CB_PERF_CTR1_SEL_0, 0);
WREG32(CB_PERF_CTR1_SEL_1, 0);
WREG32(CB_PERF_CTR2_SEL_0, 0);
WREG32(CB_PERF_CTR2_SEL_1, 0);
WREG32(CB_PERF_CTR3_SEL_0, 0);
WREG32(CB_PERF_CTR3_SEL_1, 0);
/* clear render buffer base addresses */
WREG32(CB_COLOR0_BASE, 0);
WREG32(CB_COLOR1_BASE, 0);
WREG32(CB_COLOR2_BASE, 0);
WREG32(CB_COLOR3_BASE, 0);
WREG32(CB_COLOR4_BASE, 0);
WREG32(CB_COLOR5_BASE, 0);
WREG32(CB_COLOR6_BASE, 0);
WREG32(CB_COLOR7_BASE, 0);
WREG32(CB_COLOR8_BASE, 0);
WREG32(CB_COLOR9_BASE, 0);
WREG32(CB_COLOR10_BASE, 0);
WREG32(CB_COLOR11_BASE, 0);
/* set the shader const cache sizes to 0 */
for (i = SQ_ALU_CONST_BUFFER_SIZE_PS_0; i < 0x28200; i += 4)
WREG32(i, 0);
for (i = SQ_ALU_CONST_BUFFER_SIZE_HS_0; i < 0x29000; i += 4)
WREG32(i, 0);
tmp = RREG32(HDP_MISC_CNTL);
tmp |= HDP_FLUSH_INVALIDATE_CACHE;
WREG32(HDP_MISC_CNTL, tmp);
hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL);
WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl);
WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3));
udelay(50);
}
int evergreen_mc_init(struct radeon_device *rdev)
{
u32 tmp;
int chansize, numchan;
/* Get VRAM informations */
rdev->mc.vram_is_ddr = true;
if (rdev->flags & RADEON_IS_IGP)
tmp = RREG32(FUS_MC_ARB_RAMCFG);
else
tmp = RREG32(MC_ARB_RAMCFG);
if (tmp & CHANSIZE_OVERRIDE) {
chansize = 16;
} else if (tmp & CHANSIZE_MASK) {
chansize = 64;
} else {
chansize = 32;
}
tmp = RREG32(MC_SHARED_CHMAP);
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
case 0:
default:
numchan = 1;
break;
case 1:
numchan = 2;
break;
case 2:
numchan = 4;
break;
case 3:
numchan = 8;
break;
}
rdev->mc.vram_width = numchan * chansize;
/* Could aper size report 0 ? */
rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
/* Setup GPU memory space */
if (rdev->flags & RADEON_IS_IGP) {
/* size in bytes on fusion */
rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE);
rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE);
} else {
/* size in MB on evergreen */
rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
}
rdev->mc.visible_vram_size = rdev->mc.aper_size;
r700_vram_gtt_location(rdev, &rdev->mc);
radeon_update_bandwidth_info(rdev);
return 0;
}
bool evergreen_gpu_is_lockup(struct radeon_device *rdev)
{
u32 srbm_status;
u32 grbm_status;
u32 grbm_status_se0, grbm_status_se1;
struct r100_gpu_lockup *lockup = &rdev->config.evergreen.lockup;
int r;
srbm_status = RREG32(SRBM_STATUS);
grbm_status = RREG32(GRBM_STATUS);
grbm_status_se0 = RREG32(GRBM_STATUS_SE0);
grbm_status_se1 = RREG32(GRBM_STATUS_SE1);
if (!(grbm_status & GUI_ACTIVE)) {
r100_gpu_lockup_update(lockup, &rdev->cp);
return false;
}
/* force CP activities */
r = radeon_ring_lock(rdev, 2);
if (!r) {
/* PACKET2 NOP */
radeon_ring_write(rdev, 0x80000000);
radeon_ring_write(rdev, 0x80000000);
radeon_ring_unlock_commit(rdev);
}
rdev->cp.rptr = RREG32(CP_RB_RPTR);
return r100_gpu_cp_is_lockup(rdev, lockup, &rdev->cp);
}
static int evergreen_gpu_soft_reset(struct radeon_device *rdev)
{
struct evergreen_mc_save save;
u32 grbm_reset = 0;
if (!(RREG32(GRBM_STATUS) & GUI_ACTIVE))
return 0;
dev_info(rdev->dev, "GPU softreset \n");
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
RREG32(GRBM_STATUS));
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
RREG32(GRBM_STATUS_SE0));
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
RREG32(GRBM_STATUS_SE1));
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
RREG32(SRBM_STATUS));
evergreen_mc_stop(rdev, &save);
if (evergreen_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
/* Disable CP parsing/prefetching */
WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT);
/* reset all the gfx blocks */
grbm_reset = (SOFT_RESET_CP |
SOFT_RESET_CB |
SOFT_RESET_DB |
SOFT_RESET_PA |
SOFT_RESET_SC |
SOFT_RESET_SPI |
SOFT_RESET_SH |
SOFT_RESET_SX |
SOFT_RESET_TC |
SOFT_RESET_TA |
SOFT_RESET_VC |
SOFT_RESET_VGT);
dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset);
WREG32(GRBM_SOFT_RESET, grbm_reset);
(void)RREG32(GRBM_SOFT_RESET);
udelay(50);
WREG32(GRBM_SOFT_RESET, 0);
(void)RREG32(GRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
RREG32(GRBM_STATUS));
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
RREG32(GRBM_STATUS_SE0));
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
RREG32(GRBM_STATUS_SE1));
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
RREG32(SRBM_STATUS));
evergreen_mc_resume(rdev, &save);
return 0;
}
int evergreen_asic_reset(struct radeon_device *rdev)
{
return evergreen_gpu_soft_reset(rdev);
}
/* Interrupts */
u32 evergreen_get_vblank_counter(struct radeon_device *rdev, int crtc)
{
switch (crtc) {
case 0:
return RREG32(CRTC_STATUS_FRAME_COUNT + EVERGREEN_CRTC0_REGISTER_OFFSET);
case 1:
return RREG32(CRTC_STATUS_FRAME_COUNT + EVERGREEN_CRTC1_REGISTER_OFFSET);
case 2:
return RREG32(CRTC_STATUS_FRAME_COUNT + EVERGREEN_CRTC2_REGISTER_OFFSET);
case 3:
return RREG32(CRTC_STATUS_FRAME_COUNT + EVERGREEN_CRTC3_REGISTER_OFFSET);
case 4:
return RREG32(CRTC_STATUS_FRAME_COUNT + EVERGREEN_CRTC4_REGISTER_OFFSET);
case 5:
return RREG32(CRTC_STATUS_FRAME_COUNT + EVERGREEN_CRTC5_REGISTER_OFFSET);
default:
return 0;
}
}
void evergreen_disable_interrupt_state(struct radeon_device *rdev)
{
u32 tmp;
WREG32(CP_INT_CNTL, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
WREG32(GRBM_INT_CNTL, 0);
WREG32(INT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0);
WREG32(INT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0);
if (rdev->num_crtc >= 4) {
WREG32(INT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0);
WREG32(INT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0);
}
if (rdev->num_crtc >= 6) {
WREG32(INT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0);
WREG32(INT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0);
}
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET, 0);
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET, 0);
if (rdev->num_crtc >= 4) {
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET, 0);
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET, 0);
}
if (rdev->num_crtc >= 6) {
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET, 0);
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET, 0);
}
WREG32(DACA_AUTODETECT_INT_CONTROL, 0);
WREG32(DACB_AUTODETECT_INT_CONTROL, 0);
tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD1_INT_CONTROL, tmp);
tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD2_INT_CONTROL, tmp);
tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD3_INT_CONTROL, tmp);
tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD4_INT_CONTROL, tmp);
tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD5_INT_CONTROL, tmp);
tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY;
WREG32(DC_HPD6_INT_CONTROL, tmp);
}
int evergreen_irq_set(struct radeon_device *rdev)
{
u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE;
u32 crtc1 = 0, crtc2 = 0, crtc3 = 0, crtc4 = 0, crtc5 = 0, crtc6 = 0;
u32 hpd1, hpd2, hpd3, hpd4, hpd5, hpd6;
u32 grbm_int_cntl = 0;
u32 grph1 = 0, grph2 = 0, grph3 = 0, grph4 = 0, grph5 = 0, grph6 = 0;
if (!rdev->irq.installed) {
WARN(1, "Can't enable IRQ/MSI because no handler is installed\n");
return -EINVAL;
}
/* don't enable anything if the ih is disabled */
if (!rdev->ih.enabled) {
r600_disable_interrupts(rdev);
/* force the active interrupt state to all disabled */
evergreen_disable_interrupt_state(rdev);
return 0;
}
hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN;
hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN;
if (rdev->irq.sw_int) {
DRM_DEBUG("evergreen_irq_set: sw int\n");
cp_int_cntl |= RB_INT_ENABLE;
cp_int_cntl |= TIME_STAMP_INT_ENABLE;
}
if (rdev->irq.crtc_vblank_int[0] ||
rdev->irq.pflip[0]) {
DRM_DEBUG("evergreen_irq_set: vblank 0\n");
crtc1 |= VBLANK_INT_MASK;
}
if (rdev->irq.crtc_vblank_int[1] ||
rdev->irq.pflip[1]) {
DRM_DEBUG("evergreen_irq_set: vblank 1\n");
crtc2 |= VBLANK_INT_MASK;
}
if (rdev->irq.crtc_vblank_int[2] ||
rdev->irq.pflip[2]) {
DRM_DEBUG("evergreen_irq_set: vblank 2\n");
crtc3 |= VBLANK_INT_MASK;
}
if (rdev->irq.crtc_vblank_int[3] ||
rdev->irq.pflip[3]) {
DRM_DEBUG("evergreen_irq_set: vblank 3\n");
crtc4 |= VBLANK_INT_MASK;
}
if (rdev->irq.crtc_vblank_int[4] ||
rdev->irq.pflip[4]) {
DRM_DEBUG("evergreen_irq_set: vblank 4\n");
crtc5 |= VBLANK_INT_MASK;
}
if (rdev->irq.crtc_vblank_int[5] ||
rdev->irq.pflip[5]) {
DRM_DEBUG("evergreen_irq_set: vblank 5\n");
crtc6 |= VBLANK_INT_MASK;
}
if (rdev->irq.hpd[0]) {
DRM_DEBUG("evergreen_irq_set: hpd 1\n");
hpd1 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[1]) {
DRM_DEBUG("evergreen_irq_set: hpd 2\n");
hpd2 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[2]) {
DRM_DEBUG("evergreen_irq_set: hpd 3\n");
hpd3 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[3]) {
DRM_DEBUG("evergreen_irq_set: hpd 4\n");
hpd4 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[4]) {
DRM_DEBUG("evergreen_irq_set: hpd 5\n");
hpd5 |= DC_HPDx_INT_EN;
}
if (rdev->irq.hpd[5]) {
DRM_DEBUG("evergreen_irq_set: hpd 6\n");
hpd6 |= DC_HPDx_INT_EN;
}
if (rdev->irq.gui_idle) {
DRM_DEBUG("gui idle\n");
grbm_int_cntl |= GUI_IDLE_INT_ENABLE;
}
WREG32(CP_INT_CNTL, cp_int_cntl);
WREG32(GRBM_INT_CNTL, grbm_int_cntl);
WREG32(INT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, crtc1);
WREG32(INT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, crtc2);
if (rdev->num_crtc >= 4) {
WREG32(INT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, crtc3);
WREG32(INT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, crtc4);
}
if (rdev->num_crtc >= 6) {
WREG32(INT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, crtc5);
WREG32(INT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, crtc6);
}
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET, grph1);
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET, grph2);
if (rdev->num_crtc >= 4) {
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET, grph3);
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET, grph4);
}
if (rdev->num_crtc >= 6) {
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET, grph5);
WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET, grph6);
}
WREG32(DC_HPD1_INT_CONTROL, hpd1);
WREG32(DC_HPD2_INT_CONTROL, hpd2);
WREG32(DC_HPD3_INT_CONTROL, hpd3);
WREG32(DC_HPD4_INT_CONTROL, hpd4);
WREG32(DC_HPD5_INT_CONTROL, hpd5);
WREG32(DC_HPD6_INT_CONTROL, hpd6);
return 0;
}
static inline void evergreen_irq_ack(struct radeon_device *rdev)
{
u32 tmp;
rdev->irq.stat_regs.evergreen.disp_int = RREG32(DISP_INTERRUPT_STATUS);
rdev->irq.stat_regs.evergreen.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE);
rdev->irq.stat_regs.evergreen.disp_int_cont2 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE2);
rdev->irq.stat_regs.evergreen.disp_int_cont3 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE3);
rdev->irq.stat_regs.evergreen.disp_int_cont4 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE4);
rdev->irq.stat_regs.evergreen.disp_int_cont5 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE5);
rdev->irq.stat_regs.evergreen.d1grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET);
rdev->irq.stat_regs.evergreen.d2grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET);
if (rdev->num_crtc >= 4) {
rdev->irq.stat_regs.evergreen.d3grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET);
rdev->irq.stat_regs.evergreen.d4grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET);
}
if (rdev->num_crtc >= 6) {
rdev->irq.stat_regs.evergreen.d5grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET);
rdev->irq.stat_regs.evergreen.d6grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET);
}
if (rdev->irq.stat_regs.evergreen.d1grph_int & GRPH_PFLIP_INT_OCCURRED)
WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR);
if (rdev->irq.stat_regs.evergreen.d2grph_int & GRPH_PFLIP_INT_OCCURRED)
WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR);
if (rdev->irq.stat_regs.evergreen.disp_int & LB_D1_VBLANK_INTERRUPT)
WREG32(VBLANK_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VBLANK_ACK);
if (rdev->irq.stat_regs.evergreen.disp_int & LB_D1_VLINE_INTERRUPT)
WREG32(VLINE_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VLINE_ACK);
if (rdev->irq.stat_regs.evergreen.disp_int_cont & LB_D2_VBLANK_INTERRUPT)
WREG32(VBLANK_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VBLANK_ACK);
if (rdev->irq.stat_regs.evergreen.disp_int_cont & LB_D2_VLINE_INTERRUPT)
WREG32(VLINE_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VLINE_ACK);
if (rdev->num_crtc >= 4) {
if (rdev->irq.stat_regs.evergreen.d3grph_int & GRPH_PFLIP_INT_OCCURRED)
WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR);
if (rdev->irq.stat_regs.evergreen.d4grph_int & GRPH_PFLIP_INT_OCCURRED)
WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR);
if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT)
WREG32(VBLANK_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VBLANK_ACK);
if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & LB_D3_VLINE_INTERRUPT)
WREG32(VLINE_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VLINE_ACK);
if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT)
WREG32(VBLANK_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VBLANK_ACK);
if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & LB_D4_VLINE_INTERRUPT)
WREG32(VLINE_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VLINE_ACK);
}
if (rdev->num_crtc >= 6) {
if (rdev->irq.stat_regs.evergreen.d5grph_int & GRPH_PFLIP_INT_OCCURRED)
WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR);
if (rdev->irq.stat_regs.evergreen.d6grph_int & GRPH_PFLIP_INT_OCCURRED)
WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR);
if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT)
WREG32(VBLANK_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VBLANK_ACK);
if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & LB_D5_VLINE_INTERRUPT)
WREG32(VLINE_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VLINE_ACK);
if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT)
WREG32(VBLANK_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VBLANK_ACK);
if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & LB_D6_VLINE_INTERRUPT)
WREG32(VLINE_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VLINE_ACK);
}
if (rdev->irq.stat_regs.evergreen.disp_int & DC_HPD1_INTERRUPT) {
tmp = RREG32(DC_HPD1_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD1_INT_CONTROL, tmp);
}
if (rdev->irq.stat_regs.evergreen.disp_int_cont & DC_HPD2_INTERRUPT) {
tmp = RREG32(DC_HPD2_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD2_INT_CONTROL, tmp);
}
if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & DC_HPD3_INTERRUPT) {
tmp = RREG32(DC_HPD3_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD3_INT_CONTROL, tmp);
}
if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & DC_HPD4_INTERRUPT) {
tmp = RREG32(DC_HPD4_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD4_INT_CONTROL, tmp);
}
if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & DC_HPD5_INTERRUPT) {
tmp = RREG32(DC_HPD5_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD5_INT_CONTROL, tmp);
}
if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & DC_HPD6_INTERRUPT) {
tmp = RREG32(DC_HPD5_INT_CONTROL);
tmp |= DC_HPDx_INT_ACK;
WREG32(DC_HPD6_INT_CONTROL, tmp);
}
}
void evergreen_irq_disable(struct radeon_device *rdev)
{
r600_disable_interrupts(rdev);
/* Wait and acknowledge irq */
mdelay(1);
evergreen_irq_ack(rdev);
evergreen_disable_interrupt_state(rdev);
}
void evergreen_irq_suspend(struct radeon_device *rdev)
{
evergreen_irq_disable(rdev);
r600_rlc_stop(rdev);
}
static inline u32 evergreen_get_ih_wptr(struct radeon_device *rdev)
{
u32 wptr, tmp;
if (rdev->wb.enabled)
wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]);
else
wptr = RREG32(IH_RB_WPTR);
if (wptr & RB_OVERFLOW) {
/* When a ring buffer overflow happen start parsing interrupt
* from the last not overwritten vector (wptr + 16). Hopefully
* this should allow us to catchup.
*/
dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n",
wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask);
rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask;
tmp = RREG32(IH_RB_CNTL);
tmp |= IH_WPTR_OVERFLOW_CLEAR;
WREG32(IH_RB_CNTL, tmp);
}
return (wptr & rdev->ih.ptr_mask);
}
int evergreen_irq_process(struct radeon_device *rdev)
{
u32 wptr;
u32 rptr;
u32 src_id, src_data;
u32 ring_index;
unsigned long flags;
bool queue_hotplug = false;
if (!rdev->ih.enabled || rdev->shutdown)
return IRQ_NONE;
wptr = evergreen_get_ih_wptr(rdev);
rptr = rdev->ih.rptr;
DRM_DEBUG("r600_irq_process start: rptr %d, wptr %d\n", rptr, wptr);
spin_lock_irqsave(&rdev->ih.lock, flags);
if (rptr == wptr) {
spin_unlock_irqrestore(&rdev->ih.lock, flags);
return IRQ_NONE;
}
restart_ih:
/* Order reading of wptr vs. reading of IH ring data */
rmb();
/* display interrupts */
evergreen_irq_ack(rdev);
rdev->ih.wptr = wptr;
while (rptr != wptr) {
/* wptr/rptr are in bytes! */
ring_index = rptr / 4;
src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff;
src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff;
switch (src_id) {
case 1: /* D1 vblank/vline */
switch (src_data) {
case 0: /* D1 vblank */
if (rdev->irq.stat_regs.evergreen.disp_int & LB_D1_VBLANK_INTERRUPT) {
if (rdev->irq.crtc_vblank_int[0]) {
drm_handle_vblank(rdev->ddev, 0);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (rdev->irq.pflip[0])
radeon_crtc_handle_flip(rdev, 0);
rdev->irq.stat_regs.evergreen.disp_int &= ~LB_D1_VBLANK_INTERRUPT;
DRM_DEBUG("IH: D1 vblank\n");
}
break;
case 1: /* D1 vline */
if (rdev->irq.stat_regs.evergreen.disp_int & LB_D1_VLINE_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int &= ~LB_D1_VLINE_INTERRUPT;
DRM_DEBUG("IH: D1 vline\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 2: /* D2 vblank/vline */
switch (src_data) {
case 0: /* D2 vblank */
if (rdev->irq.stat_regs.evergreen.disp_int_cont & LB_D2_VBLANK_INTERRUPT) {
if (rdev->irq.crtc_vblank_int[1]) {
drm_handle_vblank(rdev->ddev, 1);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (rdev->irq.pflip[1])
radeon_crtc_handle_flip(rdev, 1);
rdev->irq.stat_regs.evergreen.disp_int_cont &= ~LB_D2_VBLANK_INTERRUPT;
DRM_DEBUG("IH: D2 vblank\n");
}
break;
case 1: /* D2 vline */
if (rdev->irq.stat_regs.evergreen.disp_int_cont & LB_D2_VLINE_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont &= ~LB_D2_VLINE_INTERRUPT;
DRM_DEBUG("IH: D2 vline\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 3: /* D3 vblank/vline */
switch (src_data) {
case 0: /* D3 vblank */
if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) {
if (rdev->irq.crtc_vblank_int[2]) {
drm_handle_vblank(rdev->ddev, 2);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (rdev->irq.pflip[2])
radeon_crtc_handle_flip(rdev, 2);
rdev->irq.stat_regs.evergreen.disp_int_cont2 &= ~LB_D3_VBLANK_INTERRUPT;
DRM_DEBUG("IH: D3 vblank\n");
}
break;
case 1: /* D3 vline */
if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont2 &= ~LB_D3_VLINE_INTERRUPT;
DRM_DEBUG("IH: D3 vline\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 4: /* D4 vblank/vline */
switch (src_data) {
case 0: /* D4 vblank */
if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) {
if (rdev->irq.crtc_vblank_int[3]) {
drm_handle_vblank(rdev->ddev, 3);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (rdev->irq.pflip[3])
radeon_crtc_handle_flip(rdev, 3);
rdev->irq.stat_regs.evergreen.disp_int_cont3 &= ~LB_D4_VBLANK_INTERRUPT;
DRM_DEBUG("IH: D4 vblank\n");
}
break;
case 1: /* D4 vline */
if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont3 &= ~LB_D4_VLINE_INTERRUPT;
DRM_DEBUG("IH: D4 vline\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 5: /* D5 vblank/vline */
switch (src_data) {
case 0: /* D5 vblank */
if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) {
if (rdev->irq.crtc_vblank_int[4]) {
drm_handle_vblank(rdev->ddev, 4);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (rdev->irq.pflip[4])
radeon_crtc_handle_flip(rdev, 4);
rdev->irq.stat_regs.evergreen.disp_int_cont4 &= ~LB_D5_VBLANK_INTERRUPT;
DRM_DEBUG("IH: D5 vblank\n");
}
break;
case 1: /* D5 vline */
if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont4 &= ~LB_D5_VLINE_INTERRUPT;
DRM_DEBUG("IH: D5 vline\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 6: /* D6 vblank/vline */
switch (src_data) {
case 0: /* D6 vblank */
if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) {
if (rdev->irq.crtc_vblank_int[5]) {
drm_handle_vblank(rdev->ddev, 5);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (rdev->irq.pflip[5])
radeon_crtc_handle_flip(rdev, 5);
rdev->irq.stat_regs.evergreen.disp_int_cont5 &= ~LB_D6_VBLANK_INTERRUPT;
DRM_DEBUG("IH: D6 vblank\n");
}
break;
case 1: /* D6 vline */
if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont5 &= ~LB_D6_VLINE_INTERRUPT;
DRM_DEBUG("IH: D6 vline\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 42: /* HPD hotplug */
switch (src_data) {
case 0:
if (rdev->irq.stat_regs.evergreen.disp_int & DC_HPD1_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int &= ~DC_HPD1_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD1\n");
}
break;
case 1:
if (rdev->irq.stat_regs.evergreen.disp_int_cont & DC_HPD2_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont &= ~DC_HPD2_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD2\n");
}
break;
case 2:
if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & DC_HPD3_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont2 &= ~DC_HPD3_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD3\n");
}
break;
case 3:
if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & DC_HPD4_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont3 &= ~DC_HPD4_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD4\n");
}
break;
case 4:
if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & DC_HPD5_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont4 &= ~DC_HPD5_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD5\n");
}
break;
case 5:
if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & DC_HPD6_INTERRUPT) {
rdev->irq.stat_regs.evergreen.disp_int_cont5 &= ~DC_HPD6_INTERRUPT;
queue_hotplug = true;
DRM_DEBUG("IH: HPD6\n");
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
break;
case 176: /* CP_INT in ring buffer */
case 177: /* CP_INT in IB1 */
case 178: /* CP_INT in IB2 */
DRM_DEBUG("IH: CP int: 0x%08x\n", src_data);
radeon_fence_process(rdev);
break;
case 181: /* CP EOP event */
DRM_DEBUG("IH: CP EOP\n");
radeon_fence_process(rdev);
break;
case 233: /* GUI IDLE */
DRM_DEBUG("IH: GUI idle\n");
rdev->pm.gui_idle = true;
wake_up(&rdev->irq.idle_queue);
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
/* wptr/rptr are in bytes! */
rptr += 16;
rptr &= rdev->ih.ptr_mask;
}
/* make sure wptr hasn't changed while processing */
wptr = evergreen_get_ih_wptr(rdev);
if (wptr != rdev->ih.wptr)
goto restart_ih;
if (queue_hotplug)
schedule_work(&rdev->hotplug_work);
rdev->ih.rptr = rptr;
WREG32(IH_RB_RPTR, rdev->ih.rptr);
spin_unlock_irqrestore(&rdev->ih.lock, flags);
return IRQ_HANDLED;
}
static int evergreen_startup(struct radeon_device *rdev)
{
int r;
/* enable pcie gen2 link */
if (!ASIC_IS_DCE5(rdev))
evergreen_pcie_gen2_enable(rdev);
if (ASIC_IS_DCE5(rdev)) {
if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw || !rdev->mc_fw) {
r = ni_init_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load firmware!\n");
return r;
}
}
r = ni_mc_load_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load MC firmware!\n");
return r;
}
} else {
if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw) {
r = r600_init_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load firmware!\n");
return r;
}
}
}
evergreen_mc_program(rdev);
if (rdev->flags & RADEON_IS_AGP) {
evergreen_agp_enable(rdev);
} else {
r = evergreen_pcie_gart_enable(rdev);
if (r)
return r;
}
evergreen_gpu_init(rdev);
r = evergreen_blit_init(rdev);
if (r) {
evergreen_blit_fini(rdev);
rdev->asic->copy = NULL;
dev_warn(rdev->dev, "failed blitter (%d) falling back to memcpy\n", r);
}
/* allocate wb buffer */
r = radeon_wb_init(rdev);
if (r)
return r;
/* Enable IRQ */
r = r600_irq_init(rdev);
if (r) {
DRM_ERROR("radeon: IH init failed (%d).\n", r);
radeon_irq_kms_fini(rdev);
return r;
}
evergreen_irq_set(rdev);
r = radeon_ring_init(rdev, rdev->cp.ring_size);
if (r)
return r;
r = evergreen_cp_load_microcode(rdev);
if (r)
return r;
r = evergreen_cp_resume(rdev);
if (r)
return r;
return 0;
}
int evergreen_resume(struct radeon_device *rdev)
{
int r;
/* reset the asic, the gfx blocks are often in a bad state
* after the driver is unloaded or after a resume
*/
if (radeon_asic_reset(rdev))
dev_warn(rdev->dev, "GPU reset failed !\n");
/* Do not reset GPU before posting, on rv770 hw unlike on r500 hw,
* posting will perform necessary task to bring back GPU into good
* shape.
*/
/* post card */
atom_asic_init(rdev->mode_info.atom_context);
r = evergreen_startup(rdev);
if (r) {
DRM_ERROR("evergreen startup failed on resume\n");
return r;
}
r = r600_ib_test(rdev);
if (r) {
DRM_ERROR("radeon: failed testing IB (%d).\n", r);
return r;
}
return r;
}
int evergreen_suspend(struct radeon_device *rdev)
{
int r;
/* FIXME: we should wait for ring to be empty */
r700_cp_stop(rdev);
rdev->cp.ready = false;
evergreen_irq_suspend(rdev);
radeon_wb_disable(rdev);
evergreen_pcie_gart_disable(rdev);
/* unpin shaders bo */
r = radeon_bo_reserve(rdev->r600_blit.shader_obj, false);
if (likely(r == 0)) {
radeon_bo_unpin(rdev->r600_blit.shader_obj);
radeon_bo_unreserve(rdev->r600_blit.shader_obj);
}
return 0;
}
int evergreen_copy_blit(struct radeon_device *rdev,
uint64_t src_offset, uint64_t dst_offset,
unsigned num_pages, struct radeon_fence *fence)
{
int r;
mutex_lock(&rdev->r600_blit.mutex);
rdev->r600_blit.vb_ib = NULL;
r = evergreen_blit_prepare_copy(rdev, num_pages * RADEON_GPU_PAGE_SIZE);
if (r) {
if (rdev->r600_blit.vb_ib)
radeon_ib_free(rdev, &rdev->r600_blit.vb_ib);
mutex_unlock(&rdev->r600_blit.mutex);
return r;
}
evergreen_kms_blit_copy(rdev, src_offset, dst_offset, num_pages * RADEON_GPU_PAGE_SIZE);
evergreen_blit_done_copy(rdev, fence);
mutex_unlock(&rdev->r600_blit.mutex);
return 0;
}
/* Plan is to move initialization in that function and use
* helper function so that radeon_device_init pretty much
* do nothing more than calling asic specific function. This
* should also allow to remove a bunch of callback function
* like vram_info.
*/
int evergreen_init(struct radeon_device *rdev)
{
int r;
/* This don't do much */
r = radeon_gem_init(rdev);
if (r)
return r;
/* Read BIOS */
if (!radeon_get_bios(rdev)) {
if (ASIC_IS_AVIVO(rdev))
return -EINVAL;
}
/* Must be an ATOMBIOS */
if (!rdev->is_atom_bios) {
dev_err(rdev->dev, "Expecting atombios for evergreen GPU\n");
return -EINVAL;
}
r = radeon_atombios_init(rdev);
if (r)
return r;
/* reset the asic, the gfx blocks are often in a bad state
* after the driver is unloaded or after a resume
*/
if (radeon_asic_reset(rdev))
dev_warn(rdev->dev, "GPU reset failed !\n");
/* Post card if necessary */
if (!radeon_card_posted(rdev)) {
if (!rdev->bios) {
dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
return -EINVAL;
}
DRM_INFO("GPU not posted. posting now...\n");
atom_asic_init(rdev->mode_info.atom_context);
}
/* Initialize scratch registers */
r600_scratch_init(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
/* Initialize clocks */
radeon_get_clock_info(rdev->ddev);
/* Fence driver */
r = radeon_fence_driver_init(rdev);
if (r)
return r;
/* initialize AGP */
if (rdev->flags & RADEON_IS_AGP) {
r = radeon_agp_init(rdev);
if (r)
radeon_agp_disable(rdev);
}
/* initialize memory controller */
r = evergreen_mc_init(rdev);
if (r)
return r;
/* Memory manager */
r = radeon_bo_init(rdev);
if (r)
return r;
r = radeon_irq_kms_init(rdev);
if (r)
return r;
rdev->cp.ring_obj = NULL;
r600_ring_init(rdev, 1024 * 1024);
rdev->ih.ring_obj = NULL;
r600_ih_ring_init(rdev, 64 * 1024);
r = r600_pcie_gart_init(rdev);
if (r)
return r;
rdev->accel_working = true;
r = evergreen_startup(rdev);
if (r) {
dev_err(rdev->dev, "disabling GPU acceleration\n");
r700_cp_fini(rdev);
r600_irq_fini(rdev);
radeon_wb_fini(rdev);
radeon_irq_kms_fini(rdev);
evergreen_pcie_gart_fini(rdev);
rdev->accel_working = false;
}
if (rdev->accel_working) {
r = radeon_ib_pool_init(rdev);
if (r) {
DRM_ERROR("radeon: failed initializing IB pool (%d).\n", r);
rdev->accel_working = false;
}
r = r600_ib_test(rdev);
if (r) {
DRM_ERROR("radeon: failed testing IB (%d).\n", r);
rdev->accel_working = false;
}
}
return 0;
}
void evergreen_fini(struct radeon_device *rdev)
{
evergreen_blit_fini(rdev);
r700_cp_fini(rdev);
r600_irq_fini(rdev);
radeon_wb_fini(rdev);
radeon_ib_pool_fini(rdev);
radeon_irq_kms_fini(rdev);
evergreen_pcie_gart_fini(rdev);
radeon_gem_fini(rdev);
radeon_fence_driver_fini(rdev);
radeon_agp_fini(rdev);
radeon_bo_fini(rdev);
radeon_atombios_fini(rdev);
kfree(rdev->bios);
rdev->bios = NULL;
}
static void evergreen_pcie_gen2_enable(struct radeon_device *rdev)
{
u32 link_width_cntl, speed_cntl;
if (radeon_pcie_gen2 == 0)
return;
if (rdev->flags & RADEON_IS_IGP)
return;
if (!(rdev->flags & RADEON_IS_PCIE))
return;
/* x2 cards have a special sequence */
if (ASIC_IS_X2(rdev))
return;
speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL);
if ((speed_cntl & LC_OTHER_SIDE_EVER_SENT_GEN2) ||
(speed_cntl & LC_OTHER_SIDE_SUPPORTS_GEN2)) {
link_width_cntl = RREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL);
link_width_cntl &= ~LC_UPCONFIGURE_DIS;
WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl);
speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL);
speed_cntl &= ~LC_TARGET_LINK_SPEED_OVERRIDE_EN;
WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl);
speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL);
speed_cntl |= LC_CLR_FAILED_SPD_CHANGE_CNT;
WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl);
speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL);
speed_cntl &= ~LC_CLR_FAILED_SPD_CHANGE_CNT;
WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl);
speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL);
speed_cntl |= LC_GEN2_EN_STRAP;
WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl);
} else {
link_width_cntl = RREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL);
/* XXX: only disable it if gen1 bridge vendor == 0x111d or 0x1106 */
if (1)
link_width_cntl |= LC_UPCONFIGURE_DIS;
else
link_width_cntl &= ~LC_UPCONFIGURE_DIS;
WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl);
}
}