1
0
Fork 0
stockfish/src/search.cpp

1648 lines
57 KiB
C++
Raw Normal View History

2008-08-31 23:59:13 -06:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad
2008-08-31 23:59:13 -06:00
Stockfish is free software: you can redistribute it and/or modify
2008-08-31 23:59:13 -06:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
2008-08-31 23:59:13 -06:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2008-08-31 23:59:13 -06:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
2008-08-31 23:59:13 -06:00
#include <cassert>
#include <cfloat>
#include <cmath>
#include <cstring>
#include <iostream>
2008-08-31 23:59:13 -06:00
#include <sstream>
#include "evaluate.h"
#include "movegen.h"
2008-08-31 23:59:13 -06:00
#include "movepick.h"
#include "notation.h"
#include "rkiss.h"
2008-08-31 23:59:13 -06:00
#include "search.h"
#include "timeman.h"
2008-08-31 23:59:13 -06:00
#include "thread.h"
#include "tt.h"
#include "ucioption.h"
namespace Search {
volatile SignalsType Signals;
LimitsType Limits;
std::vector<RootMove> RootMoves;
Position RootPos;
Color RootColor;
Time::point SearchTime;
StateStackPtr SetupStates;
}
using std::string;
using Eval::evaluate;
using namespace Search;
2008-08-31 23:59:13 -06:00
namespace {
// Set to true to force running with one thread. Used for debugging
const bool FakeSplit = false;
// Different node types, used as template parameter
enum NodeType { Root, PV, NonPV };
// Dynamic razoring margin based on depth
inline Value razor_margin(Depth d) { return Value(512 + 16 * d); }
2008-08-31 23:59:13 -06:00
// Futility lookup tables (initialized at startup) and their access functions
int FutilityMoveCounts[2][32]; // [improving][depth]
inline Value futility_margin(Depth d) {
return Value(100 * d);
}
// Reduction lookup tables (initialized at startup) and their access function
int8_t Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
template <bool PvNode> inline Depth reduction(bool i, Depth d, int mn) {
return (Depth) Reductions[PvNode][i][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)];
}
size_t MultiPV, PVIdx;
TimeManager TimeMgr;
double BestMoveChanges;
Value DrawValue[COLOR_NB];
HistoryStats History;
GainsStats Gains;
MovesStats Countermoves, Followupmoves;
template <NodeType NT, bool SpNode>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
template <NodeType NT, bool InCheck>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
void id_loop(Position& pos);
Value value_to_tt(Value v, int ply);
Value value_from_tt(Value v, int ply);
void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt);
string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
2008-08-31 23:59:13 -06:00
struct Skill {
Skill(int l) : level(l), best(MOVE_NONE) {}
~Skill() {
if (enabled()) // Swap best PV line with the sub-optimal one
std::swap(RootMoves[0], *std::find(RootMoves.begin(),
RootMoves.end(), best ? best : pick_move()));
}
bool enabled() const { return level < 20; }
bool time_to_pick(int depth) const { return depth == 1 + level; }
Move pick_move();
int level;
Move best;
};
} // namespace
2008-08-31 23:59:13 -06:00
/// Search::init() is called during startup to initialize various lookup tables
2008-08-31 23:59:13 -06:00
void Search::init() {
int d; // depth (ONE_PLY == 2)
int hd; // half depth (ONE_PLY == 1)
int mc; // moveCount
// Init reductions array
for (hd = 1; hd < 64; ++hd) for (mc = 1; mc < 64; ++mc)
{
double pvRed = 0.00 + log(double(hd)) * log(double(mc)) / 3.00;
double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25;
Reductions[1][1][hd][mc] = int8_t( pvRed >= 1.0 ? pvRed * int(ONE_PLY) : 0);
Reductions[0][1][hd][mc] = int8_t(nonPVRed >= 1.0 ? nonPVRed * int(ONE_PLY) : 0);
Reductions[1][0][hd][mc] = Reductions[1][1][hd][mc];
Reductions[0][0][hd][mc] = Reductions[0][1][hd][mc];
if (Reductions[0][0][hd][mc] > 2 * ONE_PLY)
Reductions[0][0][hd][mc] += ONE_PLY;
else if (Reductions[0][0][hd][mc] > 1 * ONE_PLY)
Reductions[0][0][hd][mc] += ONE_PLY / 2;
}
// Init futility move count array
for (d = 0; d < 32; ++d)
{
FutilityMoveCounts[0][d] = int(2.4 + 0.222 * pow(d + 0.00, 1.8));
FutilityMoveCounts[1][d] = int(3.0 + 0.300 * pow(d + 0.98, 1.8));
}
}
/// Search::perft() is our utility to verify move generation. All the leaf nodes
/// up to the given depth are generated and counted and the sum returned.
static uint64_t perft(Position& pos, Depth depth) {
StateInfo st;
uint64_t cnt = 0;
CheckInfo ci(pos);
const bool leaf = depth == 2 * ONE_PLY;
for (MoveList<LEGAL> it(pos); *it; ++it)
{
pos.do_move(*it, st, ci, pos.gives_check(*it, ci));
cnt += leaf ? MoveList<LEGAL>(pos).size() : ::perft(pos, depth - ONE_PLY);
pos.undo_move(*it);
}
return cnt;
}
uint64_t Search::perft(Position& pos, Depth depth) {
return depth > ONE_PLY ? ::perft(pos, depth) : MoveList<LEGAL>(pos).size();
}
/// Search::think() is the external interface to Stockfish's search, and is
/// called by the main thread when the program receives the UCI 'go' command. It
/// searches from RootPos and at the end prints the "bestmove" to output.
2008-08-31 23:59:13 -06:00
void Search::think() {
2008-08-31 23:59:13 -06:00
RootColor = RootPos.side_to_move();
TimeMgr.init(Limits, RootPos.game_ply(), RootColor);
int cf = Options["Contempt Factor"] * PawnValueEg / 100; // From centipawns
DrawValue[ RootColor] = VALUE_DRAW - Value(cf);
DrawValue[~RootColor] = VALUE_DRAW + Value(cf);
if (RootMoves.empty())
{
RootMoves.push_back(MOVE_NONE);
sync_cout << "info depth 0 score "
<< score_to_uci(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
<< sync_endl;
goto finalize;
}
if (Options["Write Search Log"])
{
Log log(Options["Search Log Filename"]);
log << "\nSearching: " << RootPos.fen()
<< "\ninfinite: " << Limits.infinite
<< " ponder: " << Limits.ponder
<< " time: " << Limits.time[RootColor]
<< " increment: " << Limits.inc[RootColor]
<< " moves to go: " << Limits.movestogo
<< "\n" << std::endl;
}
// Reset the threads, still sleeping: will wake up at split time
for (size_t i = 0; i < Threads.size(); ++i)
Threads[i]->maxPly = 0;
Threads.timer->run = true;
Threads.timer->notify_one(); // Wake up the recurring timer
id_loop(RootPos); // Let's start searching !
Threads.timer->run = false; // Stop the timer
if (Options["Write Search Log"])
{
Time::point elapsed = Time::now() - SearchTime + 1;
Log log(Options["Search Log Filename"]);
log << "Nodes: " << RootPos.nodes_searched()
<< "\nNodes/second: " << RootPos.nodes_searched() * 1000 / elapsed
<< "\nBest move: " << move_to_san(RootPos, RootMoves[0].pv[0]);
StateInfo st;
RootPos.do_move(RootMoves[0].pv[0], st);
log << "\nPonder move: " << move_to_san(RootPos, RootMoves[0].pv[1]) << std::endl;
RootPos.undo_move(RootMoves[0].pv[0]);
}
finalize:
// When search is stopped this info is not printed
sync_cout << "info nodes " << RootPos.nodes_searched()
<< " time " << Time::now() - SearchTime + 1 << sync_endl;
// When we reach the maximum depth, we can arrive here without a raise of
// Signals.stop. However, if we are pondering or in an infinite search,
// the UCI protocol states that we shouldn't print the best move before the
// GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
// until the GUI sends one of those commands (which also raises Signals.stop).
if (!Signals.stop && (Limits.ponder || Limits.infinite))
{
Signals.stopOnPonderhit = true;
RootPos.this_thread()->wait_for(Signals.stop);
}
// Best move could be MOVE_NONE when searching on a stalemate position
sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], RootPos.is_chess960())
<< " ponder " << move_to_uci(RootMoves[0].pv[1], RootPos.is_chess960())
<< sync_endl;
2008-08-31 23:59:13 -06:00
}
namespace {
// id_loop() is the main iterative deepening loop. It calls search() repeatedly
// with increasing depth until the allocated thinking time has been consumed,
// user stops the search, or the maximum search depth is reached.
2008-08-31 23:59:13 -06:00
void id_loop(Position& pos) {
Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2)
int depth;
Value bestValue, alpha, beta, delta;
std::memset(ss-2, 0, 5 * sizeof(Stack));
(ss-1)->currentMove = MOVE_NULL; // Hack to skip update gains
depth = 0;
BestMoveChanges = 0;
bestValue = delta = alpha = -VALUE_INFINITE;
beta = VALUE_INFINITE;
TT.new_search();
History.clear();
Gains.clear();
Countermoves.clear();
Followupmoves.clear();
MultiPV = Options["MultiPV"];
Skill skill(Options["Skill Level"]);
// Do we have to play with skill handicap? In this case enable MultiPV search
// that we will use behind the scenes to retrieve a set of possible moves.
if (skill.enabled() && MultiPV < 4)
MultiPV = 4;
MultiPV = std::min(MultiPV, RootMoves.size());
// Iterative deepening loop until requested to stop or target depth reached
while (++depth <= MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth))
{
// Age out PV variability metric
BestMoveChanges *= 0.5;
// Save the last iteration's scores before first PV line is searched and
// all the move scores except the (new) PV are set to -VALUE_INFINITE.
for (size_t i = 0; i < RootMoves.size(); ++i)
RootMoves[i].prevScore = RootMoves[i].score;
// MultiPV loop. We perform a full root search for each PV line
for (PVIdx = 0; PVIdx < MultiPV && !Signals.stop; ++PVIdx)
{
// Reset aspiration window starting size
if (depth >= 5)
{
delta = Value(16);
alpha = std::max(RootMoves[PVIdx].prevScore - delta,-VALUE_INFINITE);
beta = std::min(RootMoves[PVIdx].prevScore + delta, VALUE_INFINITE);
}
// Start with a small aspiration window and, in the case of a fail
// high/low, re-search with a bigger window until we're not failing
// high/low anymore.
while (true)
{
bestValue = search<Root, false>(pos, ss, alpha, beta, depth * ONE_PLY, false);
// Bring the best move to the front. It is critical that sorting
// is done with a stable algorithm because all the values but the
// first and eventually the new best one are set to -VALUE_INFINITE
// and we want to keep the same order for all the moves except the
// new PV that goes to the front. Note that in case of MultiPV
// search the already searched PV lines are preserved.
std::stable_sort(RootMoves.begin() + PVIdx, RootMoves.end());
// Write PV back to transposition table in case the relevant
// entries have been overwritten during the search.
for (size_t i = 0; i <= PVIdx; ++i)
RootMoves[i].insert_pv_in_tt(pos);
// If search has been stopped break immediately. Sorting and
// writing PV back to TT is safe because RootMoves is still
// valid, although it refers to previous iteration.
if (Signals.stop)
break;
// When failing high/low give some update (without cluttering
// the UI) before a re-search.
if ( (bestValue <= alpha || bestValue >= beta)
&& Time::now() - SearchTime > 3000)
sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
// In case of failing low/high increase aspiration window and
// re-search, otherwise exit the loop.
if (bestValue <= alpha)
{
alpha = std::max(bestValue - delta, -VALUE_INFINITE);
Signals.failedLowAtRoot = true;
Signals.stopOnPonderhit = false;
}
else if (bestValue >= beta)
beta = std::min(bestValue + delta, VALUE_INFINITE);
else
break;
delta += delta / 2;
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
}
// Sort the PV lines searched so far and update the GUI
std::stable_sort(RootMoves.begin(), RootMoves.begin() + PVIdx + 1);
if (PVIdx + 1 == MultiPV || Time::now() - SearchTime > 3000)
sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
}
// If skill levels are enabled and time is up, pick a sub-optimal best move
if (skill.enabled() && skill.time_to_pick(depth))
skill.pick_move();
if (Options["Write Search Log"])
{
RootMove& rm = RootMoves[0];
if (skill.best != MOVE_NONE)
rm = *std::find(RootMoves.begin(), RootMoves.end(), skill.best);
Log log(Options["Search Log Filename"]);
log << pretty_pv(pos, depth, rm.score, Time::now() - SearchTime, &rm.pv[0])
<< std::endl;
}
// Have we found a "mate in x"?
if ( Limits.mate
&& bestValue >= VALUE_MATE_IN_MAX_PLY
&& VALUE_MATE - bestValue <= 2 * Limits.mate)
Signals.stop = true;
// Do we have time for the next iteration? Can we stop searching now?
if (Limits.use_time_management() && !Signals.stop && !Signals.stopOnPonderhit)
{
// Take some extra time if the best move has changed
if (depth > 4 && depth < 50 && MultiPV == 1)
TimeMgr.pv_instability(BestMoveChanges);
// Stop the search if only one legal move is available or all
// of the available time has been used.
if ( RootMoves.size() == 1
|| Time::now() - SearchTime > TimeMgr.available_time())
{
// If we are allowed to ponder do not stop the search now but
// keep pondering until the GUI sends "ponderhit" or "stop".
if (Limits.ponder)
Signals.stopOnPonderhit = true;
else
Signals.stop = true;
}
2008-08-31 23:59:13 -06:00
}
}
}
// search<>() is the main search function for both PV and non-PV nodes and for
// normal and SplitPoint nodes. When called just after a split point the search
// is simpler because we have already probed the hash table, done a null move
// search, and searched the first move before splitting, so we don't have to
// repeat all this work again. We also don't need to store anything to the hash
// table here: This is taken care of after we return from the split point.
2008-08-31 23:59:13 -06:00
template <NodeType NT, bool SpNode>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
const bool RootNode = NT == Root;
const bool PvNode = NT == PV || NT == Root;
assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(depth > DEPTH_ZERO);
2008-08-31 23:59:13 -06:00
Move quietsSearched[64];
StateInfo st;
const TTEntry *tte;
SplitPoint* splitPoint;
Key posKey;
Move ttMove, move, excludedMove, bestMove;
Depth ext, newDepth, predictedDepth;
Value bestValue, value, ttValue, eval, nullValue, futilityValue;
bool inCheck, givesCheck, pvMove, singularExtensionNode, improving;
bool captureOrPromotion, dangerous, doFullDepthSearch;
int moveCount, quietCount;
// Step 1. Initialize node
Thread* thisThread = pos.this_thread();
inCheck = pos.checkers();
if (SpNode)
{
splitPoint = ss->splitPoint;
bestMove = splitPoint->bestMove;
bestValue = splitPoint->bestValue;
tte = NULL;
ttMove = excludedMove = MOVE_NONE;
ttValue = VALUE_NONE;
assert(splitPoint->bestValue > -VALUE_INFINITE && splitPoint->moveCount > 0);
goto moves_loop;
}
moveCount = quietCount = 0;
bestValue = -VALUE_INFINITE;
ss->currentMove = ss->ttMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
ss->ply = (ss-1)->ply + 1;
(ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
// Used to send selDepth info to GUI
if (PvNode && thisThread->maxPly < ss->ply)
thisThread->maxPly = ss->ply;
if (!RootNode)
{
// Step 2. Check for aborted search and immediate draw
if (Signals.stop || pos.is_draw() || ss->ply > MAX_PLY)
return ss->ply > MAX_PLY && !inCheck ? evaluate(pos) : DrawValue[pos.side_to_move()];
// Step 3. Mate distance pruning. Even if we mate at the next move our score
// would be at best mate_in(ss->ply+1), but if alpha is already bigger because
// a shorter mate was found upward in the tree then there is no need to search
// because we will never beat the current alpha. Same logic but with reversed
// signs applies also in the opposite condition of being mated instead of giving
// mate. In this case return a fail-high score.
alpha = std::max(mated_in(ss->ply), alpha);
beta = std::min(mate_in(ss->ply+1), beta);
if (alpha >= beta)
return alpha;
}
// Step 4. Transposition table lookup
// We don't want the score of a partial search to overwrite a previous full search
// TT value, so we use a different position key in case of an excluded move.
excludedMove = ss->excludedMove;
posKey = excludedMove ? pos.exclusion_key() : pos.key();
tte = TT.probe(posKey);
ss->ttMove = ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE;
ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
// At PV nodes we check for exact scores, whilst at non-PV nodes we check for
// a fail high/low. The biggest advantage to probing at PV nodes is to have a
// smooth experience in analysis mode. We don't probe at Root nodes otherwise
// we should also update RootMoveList to avoid bogus output.
if ( !RootNode
&& tte
&& tte->depth() >= depth
&& ttValue != VALUE_NONE // Only in case of TT access race
&& ( PvNode ? tte->bound() == BOUND_EXACT
: ttValue >= beta ? (tte->bound() & BOUND_LOWER)
: (tte->bound() & BOUND_UPPER)))
{
ss->currentMove = ttMove; // Can be MOVE_NONE
// If ttMove is quiet, update killers, history, counter move and followup move on TT hit
if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove) && !inCheck)
update_stats(pos, ss, ttMove, depth, NULL, 0);
return ttValue;
2008-08-31 23:59:13 -06:00
}
// Step 5. Evaluate the position statically and update parent's gain statistics
if (inCheck)
{
ss->staticEval = eval = VALUE_NONE;
goto moves_loop;
}
else if (tte)
{
// Never assume anything on values stored in TT
if ((ss->staticEval = eval = tte->eval_value()) == VALUE_NONE)
eval = ss->staticEval = evaluate(pos);
// Can ttValue be used as a better position evaluation?
if (ttValue != VALUE_NONE)
if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))
eval = ttValue;
}
else
{
eval = ss->staticEval = evaluate(pos);
TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, ss->staticEval);
2011-10-31 01:28:59 -06:00
}
2008-08-31 23:59:13 -06:00
if ( !pos.captured_piece_type()
&& ss->staticEval != VALUE_NONE
&& (ss-1)->staticEval != VALUE_NONE
&& (move = (ss-1)->currentMove) != MOVE_NULL
&& type_of(move) == NORMAL)
{
Square to = to_sq(move);
Gains.update(pos.piece_on(to), to, -(ss-1)->staticEval - ss->staticEval);
}
// Step 6. Razoring (skipped when in check)
if ( !PvNode
&& depth < 4 * ONE_PLY
&& eval + razor_margin(depth) <= alpha
&& ttMove == MOVE_NONE
&& abs(beta) < VALUE_MATE_IN_MAX_PLY
&& !pos.pawn_on_7th(pos.side_to_move()))
{
if ( depth <= ONE_PLY
&& eval + razor_margin(3 * ONE_PLY) <= alpha)
return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO);
Better document razoring Use ralpha instead of rbeta * rbeta is confusing people. It took THREE attempts to code razoring at PV nodes correctly in a recent test, because of the rbeta trick. Unnecessary tricks should be avoided. * The more correct and self-documenting way of doing this, is to say that we use a zero window around alpha-margin, not beta-margin. The fact that, because we only do it at PV nodes, alpha happens to be beta-1 and that the current stuff with rbeta works, may be correct, but is confusing. Remove the misleading and partially erroneous comment about returning v + margin: * comments should explain what the code does, not what it could have done. * this comment is partially wrong in saying that v+margin is "logical", and that it is "surprising" that is doesn't work. From a theoretical perspective, at least 3 ways of doing this are equally defendable: 1/ fail hard: return alpha: The most conservative. We bet that the search will fail low, but we don't know by how much and don't want to take risks. 2/ aggressive fail soft: return v (what the current code does). This corresponds to normal fail soft, with the added assumption that we don't care about the reduction effect (see below point 3/) 3/ conservative fail soft: return v + margin. If the reduced search (qsearch) gives us a score <= v, we bet that the non reduced search will give us a score <= v + margin. * Saying that 2/ is "logical" implies that 1/ and 3/ are not, which is arguably wrong. Besides, experimental results tell us that 2/ beats 3/, and that's not something we can argue against: experimental results are the only trusted metric. * Also, with the benefit of hindsight, I don't think the fact that 2/ is better than 3/ is surprising at all. The point is that it is YOUR turn to move, and you are assuming that by NOT playing (and letting the opponent capture your hanging pieces in QS) you cannot generally GAIN razor_margin(depth). No functional change.
2014-02-02 18:41:32 -07:00
Value ralpha = alpha - razor_margin(depth);
Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO);
if (v <= ralpha)
return v;
}
// Step 7. Futility pruning: child node (skipped when in check)
if ( !PvNode
&& !ss->skipNullMove
&& depth < 7 * ONE_PLY
&& eval - futility_margin(depth) >= beta
&& abs(beta) < VALUE_MATE_IN_MAX_PLY
&& abs(eval) < VALUE_KNOWN_WIN
&& pos.non_pawn_material(pos.side_to_move()))
return eval - futility_margin(depth);
// Step 8. Null move search with verification search (is omitted in PV nodes)
if ( !PvNode
&& !ss->skipNullMove
&& depth >= 2 * ONE_PLY
&& eval >= beta
&& abs(beta) < VALUE_MATE_IN_MAX_PLY
&& pos.non_pawn_material(pos.side_to_move()))
{
ss->currentMove = MOVE_NULL;
assert(eval - beta >= 0);
// Null move dynamic reduction based on depth and value
Depth R = 3 * ONE_PLY
+ depth / 4
+ int(eval - beta) / PawnValueMg * ONE_PLY;
pos.do_null_move(st);
(ss+1)->skipNullMove = true;
nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO)
: - search<NonPV, false>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
(ss+1)->skipNullMove = false;
pos.undo_null_move();
if (nullValue >= beta)
{
// Do not return unproven mate scores
if (nullValue >= VALUE_MATE_IN_MAX_PLY)
nullValue = beta;
if (depth < 12 * ONE_PLY)
return nullValue;
// Do verification search at high depths
ss->skipNullMove = true;
Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO)
: search<NonPV, false>(pos, ss, beta-1, beta, depth-R, false);
ss->skipNullMove = false;
if (v >= beta)
return nullValue;
}
}
2008-08-31 23:59:13 -06:00
// Step 9. ProbCut (skipped when in check)
// If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
// and a reduced search returns a value much above beta, we can (almost) safely
// prune the previous move.
if ( !PvNode
&& depth >= 5 * ONE_PLY
&& !ss->skipNullMove
&& abs(beta) < VALUE_MATE_IN_MAX_PLY)
{
Value rbeta = std::min(beta + 200, VALUE_INFINITE);
Depth rdepth = depth - 4 * ONE_PLY;
assert(rdepth >= ONE_PLY);
assert((ss-1)->currentMove != MOVE_NONE);
assert((ss-1)->currentMove != MOVE_NULL);
MovePicker mp(pos, ttMove, History, pos.captured_piece_type());
CheckInfo ci(pos);
while ((move = mp.next_move<false>()) != MOVE_NONE)
if (pos.legal(move, ci.pinned))
{
ss->currentMove = move;
pos.do_move(move, st, ci, pos.gives_check(move, ci));
value = -search<NonPV, false>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode);
pos.undo_move(move);
if (value >= rbeta)
return value;
}
}
// Step 10. Internal iterative deepening (skipped when in check)
if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
&& !ttMove
&& (PvNode || ss->staticEval + 256 >= beta))
{
Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4);
ss->skipNullMove = true;
search<PvNode ? PV : NonPV, false>(pos, ss, alpha, beta, d, true);
ss->skipNullMove = false;
tte = TT.probe(posKey);
ttMove = tte ? tte->move() : MOVE_NONE;
2008-08-31 23:59:13 -06:00
}
moves_loop: // When in check and at SpNode search starts from here
Square prevMoveSq = to_sq((ss-1)->currentMove);
Move countermoves[] = { Countermoves[pos.piece_on(prevMoveSq)][prevMoveSq].first,
Countermoves[pos.piece_on(prevMoveSq)][prevMoveSq].second };
Square prevOwnMoveSq = to_sq((ss-2)->currentMove);
Move followupmoves[] = { Followupmoves[pos.piece_on(prevOwnMoveSq)][prevOwnMoveSq].first,
Followupmoves[pos.piece_on(prevOwnMoveSq)][prevOwnMoveSq].second };
MovePicker mp(pos, ttMove, depth, History, countermoves, followupmoves, ss);
CheckInfo ci(pos);
value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
improving = ss->staticEval >= (ss-2)->staticEval
|| ss->staticEval == VALUE_NONE
||(ss-2)->staticEval == VALUE_NONE;
singularExtensionNode = !RootNode
&& !SpNode
&& depth >= 8 * ONE_PLY
&& ttMove != MOVE_NONE
&& !excludedMove // Recursive singular search is not allowed
&& (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 3 * ONE_PLY;
// Step 11. Loop through moves
// Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
while ((move = mp.next_move<SpNode>()) != MOVE_NONE)
{
assert(is_ok(move));
if (move == excludedMove)
continue;
// At root obey the "searchmoves" option and skip moves not listed in Root
// Move List. As a consequence any illegal move is also skipped. In MultiPV
// mode we also skip PV moves which have been already searched.
if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move))
continue;
if (SpNode)
{
// Shared counter cannot be decremented later if the move turns out to be illegal
if (!pos.legal(move, ci.pinned))
continue;
moveCount = ++splitPoint->moveCount;
splitPoint->mutex.unlock();
}
else
++moveCount;
if (RootNode)
{
Signals.firstRootMove = (moveCount == 1);
if (thisThread == Threads.main() && Time::now() - SearchTime > 3000)
sync_cout << "info depth " << depth / ONE_PLY
<< " currmove " << move_to_uci(move, pos.is_chess960())
<< " currmovenumber " << moveCount + PVIdx << sync_endl;
}
ext = DEPTH_ZERO;
captureOrPromotion = pos.capture_or_promotion(move);
givesCheck = type_of(move) == NORMAL && !ci.dcCandidates
? ci.checkSq[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
: pos.gives_check(move, ci);
dangerous = givesCheck
|| type_of(move) != NORMAL
|| pos.advanced_pawn_push(move);
// Step 12. Extend checks
if (givesCheck && pos.see_sign(move) >= VALUE_ZERO)
ext = ONE_PLY;
2008-08-31 23:59:13 -06:00
// Singular extension search. If all moves but one fail low on a search of
// (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
// is singular and should be extended. To verify this we do a reduced search
// on all the other moves but the ttMove and if the result is lower than
// ttValue minus a margin then we extend the ttMove.
if ( singularExtensionNode
&& move == ttMove
&& !ext
&& pos.legal(move, ci.pinned)
&& abs(ttValue) < VALUE_KNOWN_WIN)
{
assert(ttValue != VALUE_NONE);
Value rBeta = ttValue - int(depth);
ss->excludedMove = move;
ss->skipNullMove = true;
value = search<NonPV, false>(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode);
ss->skipNullMove = false;
ss->excludedMove = MOVE_NONE;
if (value < rBeta)
ext = ONE_PLY;
}
// Update the current move (this must be done after singular extension search)
newDepth = depth - ONE_PLY + ext;
// Step 13. Pruning at shallow depth (exclude PV nodes)
if ( !PvNode
&& !captureOrPromotion
&& !inCheck
&& !dangerous
/* && move != ttMove Already implicit in the next condition */
&& bestValue > VALUE_MATED_IN_MAX_PLY)
{
// Move count based pruning
if ( depth < 16 * ONE_PLY
&& moveCount >= FutilityMoveCounts[improving][depth] )
{
if (SpNode)
splitPoint->mutex.lock();
continue;
}
2008-08-31 23:59:13 -06:00
predictedDepth = newDepth - reduction<PvNode>(improving, depth, moveCount);
// Futility pruning: parent node
if (predictedDepth < 7 * ONE_PLY)
{
futilityValue = ss->staticEval + futility_margin(predictedDepth)
+ 128 + Gains[pos.moved_piece(move)][to_sq(move)];
if (futilityValue <= alpha)
{
bestValue = std::max(bestValue, futilityValue);
if (SpNode)
{
splitPoint->mutex.lock();
if (bestValue > splitPoint->bestValue)
splitPoint->bestValue = bestValue;
}
continue;
}
}
// Prune moves with negative SEE at low depths
if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO)
{
if (SpNode)
splitPoint->mutex.lock();
continue;
}
2008-08-31 23:59:13 -06:00
}
// Check for legality just before making the move
if (!RootNode && !SpNode && !pos.legal(move, ci.pinned))
{
moveCount--;
continue;
}
pvMove = PvNode && moveCount == 1;
ss->currentMove = move;
if (!SpNode && !captureOrPromotion && quietCount < 64)
quietsSearched[quietCount++] = move;
// Step 14. Make the move
pos.do_move(move, st, ci, givesCheck);
// Step 15. Reduced depth search (LMR). If the move fails high it will be
// re-searched at full depth.
if ( depth >= 3 * ONE_PLY
&& !pvMove
&& !captureOrPromotion
&& move != ttMove
&& move != ss->killers[0]
&& move != ss->killers[1])
{
ss->reduction = reduction<PvNode>(improving, depth, moveCount);
if (!PvNode && cutNode)
ss->reduction += ONE_PLY;
else if (History[pos.piece_on(to_sq(move))][to_sq(move)] < 0)
ss->reduction += ONE_PLY / 2;
if (move == countermoves[0] || move == countermoves[1])
ss->reduction = std::max(DEPTH_ZERO, ss->reduction - ONE_PLY);
Depth d = std::max(newDepth - ss->reduction, ONE_PLY);
if (SpNode)
alpha = splitPoint->alpha;
value = -search<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, d, true);
// Re-search at intermediate depth if reduction is very high
if (value > alpha && ss->reduction >= 4 * ONE_PLY)
{
Depth d2 = std::max(newDepth - 2 * ONE_PLY, ONE_PLY);
value = -search<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, d2, true);
}
doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO);
ss->reduction = DEPTH_ZERO;
}
else
doFullDepthSearch = !pvMove;
// Step 16. Full depth search, when LMR is skipped or fails high
if (doFullDepthSearch)
{
if (SpNode)
alpha = splitPoint->alpha;
value = newDepth < ONE_PLY ?
givesCheck ? -qsearch<NonPV, true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
: -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
: - search<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
2008-08-31 23:59:13 -06:00
}
// For PV nodes only, do a full PV search on the first move or after a fail
// high (in the latter case search only if value < beta), otherwise let the
// parent node fail low with value <= alpha and to try another move.
if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta))))
value = newDepth < ONE_PLY ?
givesCheck ? -qsearch<PV, true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
: -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
: - search<PV, false>(pos, ss+1, -beta, -alpha, newDepth, false);
// Step 17. Undo move
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 18. Check for new best move
if (SpNode)
{
splitPoint->mutex.lock();
bestValue = splitPoint->bestValue;
alpha = splitPoint->alpha;
}
// Finished searching the move. If a stop or a cutoff occurred, the return
// value of the search cannot be trusted, and we return immediately without
// updating best move, PV and TT.
if (Signals.stop || thisThread->cutoff_occurred())
return VALUE_ZERO;
if (RootNode)
{
RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move);
// PV move or new best move ?
if (pvMove || value > alpha)
{
rm.score = value;
rm.extract_pv_from_tt(pos);
// We record how often the best move has been changed in each
// iteration. This information is used for time management: When
// the best move changes frequently, we allocate some more time.
if (!pvMove)
++BestMoveChanges;
}
else
// All other moves but the PV are set to the lowest value: this is
// not a problem when sorting because the sort is stable and the
// move position in the list is preserved - just the PV is pushed up.
rm.score = -VALUE_INFINITE;
}
if (value > bestValue)
{
bestValue = SpNode ? splitPoint->bestValue = value : value;
if (value > alpha)
{
bestMove = SpNode ? splitPoint->bestMove = move : move;
if (PvNode && value < beta) // Update alpha! Always alpha < beta
alpha = SpNode ? splitPoint->alpha = value : value;
else
{
assert(value >= beta); // Fail high
if (SpNode)
splitPoint->cutoff = true;
break;
}
}
}
// Step 19. Check for splitting the search
if ( !SpNode
&& Threads.size() >= 2
&& depth >= Threads.minimumSplitDepth
&& ( !thisThread->activeSplitPoint
|| !thisThread->activeSplitPoint->allSlavesSearching)
&& thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD)
{
assert(bestValue > -VALUE_INFINITE && bestValue < beta);
thisThread->split<FakeSplit>(pos, ss, alpha, beta, &bestValue, &bestMove,
depth, moveCount, &mp, NT, cutNode);
if (Signals.stop || thisThread->cutoff_occurred())
return VALUE_ZERO;
if (bestValue >= beta)
break;
}
2008-08-31 23:59:13 -06:00
}
if (SpNode)
return bestValue;
// Following condition would detect a stop or a cutoff set only after move
// loop has been completed. But in this case bestValue is valid because we
// have fully searched our subtree, and we can anyhow save the result in TT.
/*
if (Signals.stop || thisThread->cutoff_occurred())
return VALUE_DRAW;
*/
// Step 20. Check for mate and stalemate
// All legal moves have been searched and if there are no legal moves, it
// must be mate or stalemate. If we are in a singular extension search then
// return a fail low score.
if (!moveCount)
bestValue = excludedMove ? alpha
: inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
// Quiet best move: update killers, history, countermoves and followupmoves
else if (bestValue >= beta && !pos.capture_or_promotion(bestMove) && !inCheck)
update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount - 1);
2008-08-31 23:59:13 -06:00
TT.store(posKey, value_to_tt(bestValue, ss->ply),
bestValue >= beta ? BOUND_LOWER :
PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
depth, bestMove, ss->staticEval);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
return bestValue;
}
2008-08-31 23:59:13 -06:00
// qsearch() is the quiescence search function, which is called by the main
// search function when the remaining depth is zero (or, to be more precise,
// less than ONE_PLY).
2008-08-31 23:59:13 -06:00
template <NodeType NT, bool InCheck>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
2008-08-31 23:59:13 -06:00
const bool PvNode = NT == PV;
assert(NT == PV || NT == NonPV);
assert(InCheck == !!pos.checkers());
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(depth <= DEPTH_ZERO);
2008-08-31 23:59:13 -06:00
StateInfo st;
const TTEntry* tte;
Key posKey;
Move ttMove, move, bestMove;
Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
bool givesCheck, evasionPrunable;
Depth ttDepth;
// To flag BOUND_EXACT a node with eval above alpha and no available moves
if (PvNode)
oldAlpha = alpha;
ss->currentMove = bestMove = MOVE_NONE;
ss->ply = (ss-1)->ply + 1;
2008-08-31 23:59:13 -06:00
// Check for an instant draw or if the maximum ply has been reached
if (pos.is_draw() || ss->ply > MAX_PLY)
return ss->ply > MAX_PLY && !InCheck ? evaluate(pos) : DrawValue[pos.side_to_move()];
// Decide whether or not to include checks: this fixes also the type of
// TT entry depth that we are going to use. Note that in qsearch we use
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
: DEPTH_QS_NO_CHECKS;
// Transposition table lookup
posKey = pos.key();
tte = TT.probe(posKey);
ttMove = tte ? tte->move() : MOVE_NONE;
ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_NONE;
if ( tte
&& tte->depth() >= ttDepth
&& ttValue != VALUE_NONE // Only in case of TT access race
&& ( PvNode ? tte->bound() == BOUND_EXACT
: ttValue >= beta ? (tte->bound() & BOUND_LOWER)
: (tte->bound() & BOUND_UPPER)))
{
ss->currentMove = ttMove; // Can be MOVE_NONE
return ttValue;
}
// Evaluate the position statically
if (InCheck)
{
ss->staticEval = VALUE_NONE;
bestValue = futilityBase = -VALUE_INFINITE;
}
else
{
if (tte)
{
// Never assume anything on values stored in TT
if ((ss->staticEval = bestValue = tte->eval_value()) == VALUE_NONE)
ss->staticEval = bestValue = evaluate(pos);
// Can ttValue be used as a better position evaluation?
if (ttValue != VALUE_NONE)
if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))
bestValue = ttValue;
}
else
ss->staticEval = bestValue = evaluate(pos);
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
{
if (!tte)
TT.store(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
DEPTH_NONE, MOVE_NONE, ss->staticEval);
return bestValue;
}
if (PvNode && bestValue > alpha)
alpha = bestValue;
futilityBase = bestValue + 128;
}
2008-08-31 23:59:13 -06:00
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
// be generated.
MovePicker mp(pos, ttMove, depth, History, to_sq((ss-1)->currentMove));
CheckInfo ci(pos);
2008-08-31 23:59:13 -06:00
// Loop through the moves until no moves remain or a beta cutoff occurs
while ((move = mp.next_move<false>()) != MOVE_NONE)
{
assert(is_ok(move));
givesCheck = type_of(move) == NORMAL && !ci.dcCandidates
? ci.checkSq[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
: pos.gives_check(move, ci);
2008-08-31 23:59:13 -06:00
// Futility pruning
if ( !PvNode
&& !InCheck
&& !givesCheck
&& move != ttMove
&& futilityBase > -VALUE_KNOWN_WIN
&& !pos.advanced_pawn_push(move))
{
assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
if (futilityValue < beta)
{
bestValue = std::max(bestValue, futilityValue);
continue;
}
if (futilityBase < beta && pos.see(move) <= VALUE_ZERO)
{
bestValue = std::max(bestValue, futilityBase);
continue;
}
2008-08-31 23:59:13 -06:00
}
// Detect non-capture evasions that are candidates to be pruned
evasionPrunable = InCheck
&& bestValue > VALUE_MATED_IN_MAX_PLY
&& !pos.capture(move)
&& !pos.can_castle(pos.side_to_move());
// Don't search moves with negative SEE values
if ( !PvNode
&& (!InCheck || evasionPrunable)
&& move != ttMove
&& type_of(move) != PROMOTION
&& pos.see_sign(move) < VALUE_ZERO)
continue;
2008-08-31 23:59:13 -06:00
// Check for legality just before making the move
if (!pos.legal(move, ci.pinned))
continue;
ss->currentMove = move;
// Make and search the move
pos.do_move(move, st, ci, givesCheck);
value = givesCheck ? -qsearch<NT, true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
: -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
pos.undo_move(move);
2008-08-31 23:59:13 -06:00
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Check for new best move
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
if (PvNode && value < beta) // Update alpha here! Always alpha < beta
{
alpha = value;
bestMove = move;
}
else // Fail high
{
TT.store(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
ttDepth, move, ss->staticEval);
return value;
}
}
}
2008-08-31 23:59:13 -06:00
}
// All legal moves have been searched. A special case: If we're in check
// and no legal moves were found, it is checkmate.
if (InCheck && bestValue == -VALUE_INFINITE)
return mated_in(ss->ply); // Plies to mate from the root
2008-08-31 23:59:13 -06:00
TT.store(posKey, value_to_tt(bestValue, ss->ply),
PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
ttDepth, bestMove, ss->staticEval);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
2008-08-31 23:59:13 -06:00
return bestValue;
}
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
// "plies to mate from the current position". Non-mate scores are unchanged.
// The function is called before storing a value in the transposition table.
Value value_to_tt(Value v, int ply) {
assert(v != VALUE_NONE);
return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
: v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
}
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
// from the transposition table (which refers to the plies to mate/be mated
// from current position) to "plies to mate/be mated from the root".
Value value_from_tt(Value v, int ply) {
return v == VALUE_NONE ? VALUE_NONE
: v >= VALUE_MATE_IN_MAX_PLY ? v - ply
: v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
}
// update_stats() updates killers, history, countermoves and followupmoves stats after a fail-high
// of a quiet move.
void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt) {
if (ss->killers[0] != move)
{
ss->killers[1] = ss->killers[0];
ss->killers[0] = move;
}
// Increase history value of the cut-off move and decrease all the other
// played quiet moves.
Value bonus = Value(int(depth) * int(depth));
History.update(pos.moved_piece(move), to_sq(move), bonus);
for (int i = 0; i < quietsCnt; ++i)
{
Move m = quiets[i];
History.update(pos.moved_piece(m), to_sq(m), -bonus);
}
if (is_ok((ss-1)->currentMove))
{
Square prevMoveSq = to_sq((ss-1)->currentMove);
Countermoves.update(pos.piece_on(prevMoveSq), prevMoveSq, move);
}
if (is_ok((ss-2)->currentMove) && (ss-1)->currentMove == (ss-1)->ttMove)
{
Square prevOwnMoveSq = to_sq((ss-2)->currentMove);
Followupmoves.update(pos.piece_on(prevOwnMoveSq), prevOwnMoveSq, move);
}
}
// When playing with a strength handicap, choose best move among the MultiPV
// set using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
Move Skill::pick_move() {
static RKISS rk;
// PRNG sequence should be not deterministic
for (int i = Time::now() % 50; i > 0; --i)
rk.rand<unsigned>();
// RootMoves are already sorted by score in descending order
int variance = std::min(RootMoves[0].score - RootMoves[MultiPV - 1].score, PawnValueMg);
int weakness = 120 - 2 * level;
int max_s = -VALUE_INFINITE;
best = MOVE_NONE;
// Choose best move. For each move score we add two terms both dependent on
// weakness. One deterministic and bigger for weaker moves, and one random,
// then we choose the move with the resulting highest score.
for (size_t i = 0; i < MultiPV; ++i)
{
int s = RootMoves[i].score;
// Don't allow crazy blunders even at very low skills
if (i > 0 && RootMoves[i-1].score > s + 2 * PawnValueMg)
break;
// This is our magic formula
s += ( weakness * int(RootMoves[0].score - s)
+ variance * (rk.rand<unsigned>() % weakness)) / 128;
if (s > max_s)
{
max_s = s;
best = RootMoves[i].pv[0];
}
}
return best;
}
// uci_pv() formats PV information according to the UCI protocol. UCI
// requires that all (if any) unsearched PV lines are sent using a previous
// search score.
string uci_pv(const Position& pos, int depth, Value alpha, Value beta) {
std::stringstream ss;
2013-06-04 15:52:00 -06:00
Time::point elapsed = Time::now() - SearchTime + 1;
size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size());
int selDepth = 0;
for (size_t i = 0; i < Threads.size(); ++i)
if (Threads[i]->maxPly > selDepth)
selDepth = Threads[i]->maxPly;
for (size_t i = 0; i < uciPVSize; ++i)
{
bool updated = (i <= PVIdx);
if (depth == 1 && !updated)
continue;
int d = updated ? depth : depth - 1;
Value v = updated ? RootMoves[i].score : RootMoves[i].prevScore;
if (ss.rdbuf()->in_avail()) // Not at first line
ss << "\n";
ss << "info depth " << d
<< " seldepth " << selDepth
<< " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v))
<< " nodes " << pos.nodes_searched()
<< " nps " << pos.nodes_searched() * 1000 / elapsed
<< " time " << elapsed
<< " multipv " << i + 1
<< " pv";
for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; ++j)
ss << " " << move_to_uci(RootMoves[i].pv[j], pos.is_chess960());
}
return ss.str();
}
} // namespace
2008-08-31 23:59:13 -06:00
/// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table.
/// We also consider both failing high nodes and BOUND_EXACT nodes here to
/// ensure that we have a ponder move even when we fail high at root. This
/// results in a long PV to print that is important for position analysis.
void RootMove::extract_pv_from_tt(Position& pos) {
StateInfo state[MAX_PLY_PLUS_6], *st = state;
const TTEntry* tte;
int ply = 1; // At root ply is 1...
Move m = pv[0]; // ...instead pv[] array starts from 0
Value expectedScore = score;
pv.clear();
do {
pv.push_back(m);
assert(MoveList<LEGAL>(pos).contains(pv[ply - 1]));
pos.do_move(pv[ply++ - 1], *st++);
tte = TT.probe(pos.key());
expectedScore = -expectedScore;
} while ( tte
&& expectedScore == value_from_tt(tte->value(), ply)
&& pos.pseudo_legal(m = tte->move()) // Local copy, TT could change
&& pos.legal(m, pos.pinned_pieces(pos.side_to_move()))
&& ply < MAX_PLY
&& (!pos.is_draw() || ply <= 2));
pv.push_back(MOVE_NONE); // Must be zero-terminating
while (--ply) pos.undo_move(pv[ply - 1]);
}
/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
/// inserts the PV back into the TT. This makes sure the old PV moves are searched
/// first, even if the old TT entries have been overwritten.
void RootMove::insert_pv_in_tt(Position& pos) {
StateInfo state[MAX_PLY_PLUS_6], *st = state;
const TTEntry* tte;
int idx = 0; // Ply starts from 1, we need to start from 0
do {
tte = TT.probe(pos.key());
if (!tte || tte->move() != pv[idx]) // Don't overwrite correct entries
TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[idx], VALUE_NONE);
assert(MoveList<LEGAL>(pos).contains(pv[idx]));
pos.do_move(pv[idx++], *st++);
} while (pv[idx] != MOVE_NONE);
while (idx) pos.undo_move(pv[--idx]);
}
/// Thread::idle_loop() is where the thread is parked when it has no work to do
void Thread::idle_loop() {
// Pointer 'this_sp' is not null only if we are called from split(), and not
// at the thread creation. This means we are the split point's master.
SplitPoint* this_sp = splitPointsSize ? activeSplitPoint : NULL;
assert(!this_sp || (this_sp->masterThread == this && searching));
while (true)
{
// If we are not searching, wait for a condition to be signaled instead of
// wasting CPU time polling for work.
while (!searching || exit)
{
if (exit)
{
assert(!this_sp);
return;
}
// Grab the lock to avoid races with Thread::notify_one()
mutex.lock();
// If we are master and all slaves have finished then exit idle_loop
if (this_sp && this_sp->slavesMask.none())
{
mutex.unlock();
break;
}
// Do sleep after retesting sleep conditions under lock protection. In
// particular we need to avoid a deadlock in case a master thread has,
// in the meanwhile, allocated us and sent the notify_one() call before
// we had the chance to grab the lock.
if (!searching && !exit)
sleepCondition.wait(mutex);
mutex.unlock();
}
// If this thread has been assigned work, launch a search
if (searching)
{
assert(!exit);
Threads.mutex.lock();
assert(searching);
assert(activeSplitPoint);
SplitPoint* sp = activeSplitPoint;
Threads.mutex.unlock();
Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2)
Position pos(*sp->pos, this);
std::memcpy(ss-2, sp->ss-2, 5 * sizeof(Stack));
ss->splitPoint = sp;
sp->mutex.lock();
assert(activePosition == NULL);
activePosition = &pos;
if (sp->nodeType == NonPV)
search<NonPV, true>(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode);
else if (sp->nodeType == PV)
search<PV, true>(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode);
else if (sp->nodeType == Root)
search<Root, true>(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode);
else
assert(false);
assert(searching);
searching = false;
activePosition = NULL;
sp->slavesMask.reset(idx);
sp->allSlavesSearching = false;
sp->nodes += pos.nodes_searched();
// Wake up the master thread so to allow it to return from the idle
// loop in case we are the last slave of the split point.
if ( this != sp->masterThread
&& sp->slavesMask.none())
{
assert(!sp->masterThread->searching);
sp->masterThread->notify_one();
}
// After releasing the lock we can't access any SplitPoint related data
// in a safe way because it could have been released under our feet by
// the sp master.
sp->mutex.unlock();
// Try to late join to another split point if none of its slaves has
// already finished.
if (Threads.size() > 2)
for (size_t i = 0; i < Threads.size(); ++i)
{
int size = Threads[i]->splitPointsSize; // Local copy
sp = size ? &Threads[i]->splitPoints[size - 1] : NULL;
if ( sp
&& sp->allSlavesSearching
&& available_to(Threads[i]))
{
// Recheck the conditions under lock protection
Threads.mutex.lock();
sp->mutex.lock();
if ( sp->allSlavesSearching
&& available_to(Threads[i]))
{
sp->slavesMask.set(idx);
activeSplitPoint = sp;
searching = true;
}
sp->mutex.unlock();
Threads.mutex.unlock();
break; // Just a single attempt
}
}
}
// If this thread is the master of a split point and all slaves have finished
// their work at this split point, return from the idle loop.
if (this_sp && this_sp->slavesMask.none())
{
this_sp->mutex.lock();
bool finished = this_sp->slavesMask.none(); // Retest under lock protection
this_sp->mutex.unlock();
if (finished)
return;
}
}
}
/// check_time() is called by the timer thread when the timer triggers. It is
/// used to print debug info and, more importantly, to detect when we are out of
/// available time and thus stop the search.
void check_time() {
static Time::point lastInfoTime = Time::now();
int64_t nodes = 0; // Workaround silly 'uninitialized' gcc warning
if (Time::now() - lastInfoTime >= 1000)
{
lastInfoTime = Time::now();
dbg_print();
}
if (Limits.ponder)
return;
if (Limits.nodes)
{
Threads.mutex.lock();
nodes = RootPos.nodes_searched();
// Loop across all split points and sum accumulated SplitPoint nodes plus
// all the currently active positions nodes.
for (size_t i = 0; i < Threads.size(); ++i)
for (int j = 0; j < Threads[i]->splitPointsSize; ++j)
{
SplitPoint& sp = Threads[i]->splitPoints[j];
sp.mutex.lock();
nodes += sp.nodes;
for (size_t idx = 0; idx < Threads.size(); ++idx)
if (sp.slavesMask.test(idx) && Threads[idx]->activePosition)
nodes += Threads[idx]->activePosition->nodes_searched();
sp.mutex.unlock();
}
Threads.mutex.unlock();
}
Time::point elapsed = Time::now() - SearchTime;
bool stillAtFirstMove = Signals.firstRootMove
&& !Signals.failedLowAtRoot
&& elapsed > TimeMgr.available_time() * 75 / 100;
bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerThread::Resolution
|| stillAtFirstMove;
if ( (Limits.use_time_management() && noMoreTime)
|| (Limits.movetime && elapsed >= Limits.movetime)
|| (Limits.nodes && nodes >= Limits.nodes))
Signals.stop = true;
}